
OPTOTERMINAL
PROGRAMMER’S

REFERENCE MANUAL
REVISION 2.5

Opto 22
43044 Business Park Drive
Temecula, CA 92590-3614

USA

Phone 800.321.OPTO (6786) or 951.695.3000
Fax 800.832OPTO (6786) or 951.695.2712

Email: sales@opto22.com
www.opto22.com

Manual 0060-01 (Opto 22 form 1345-070321)
6345E1 - Printed in USA

© Copyright QSI Corporation 2006–2007

QSI reserves the right to modify this manual and/or the product(s) it describes without notice. In no event shall QSI be liable for incidental or consequential
damages, or for the infringement of any patent rights or third party rights, due to the use of its products.

QTERM-G70, QTERM-G75, QTERM-G55, QTERM-Z60, QTERM, G70, G75, G55, Z60, Qlarity, and Qlarity Foundry are trademarks of QSI Corporation.
OptoTerminal is a trademark of Opto 22. Microsoft, Windows, Windows NT, Windows 2000 and their respective logos are

registered trademarks of Microsoft Corporation in the United States and other countries.

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

FOREWORD

The Qlarity-based terminals’ software is divided into four major components: User Application (created in Qlarity
Foundry™ or a compatible text editor using the Qlarity™ programming language), Application Binary (the user application
compiled as binary so it can be downloaded to the terminal), System Software and Operating System (written in C using µC/
OS) and the Hardware Abstraction (for the Windows® and the terminal’s hardware drivers).

Chapter 1 OptoTerminal Software Fundamentals. This chapter provides basic information on the Qlarity-based ter-
minal software, including the Qlarity programming language and the message handling system.

Chapter 2 Qlarity Language Syntax. This chapter provides detailed information on the syntax for writing in Qlarity.

Chapter 3 Messages and Message Handler Prototypes. This chapter provides descriptions of all system messages.
Included is the format (number and types of parameters and return type) that must be used to declare a han-
dler for each message.

Chapter 4 Qlarity API Function Reference. This chapter describes the available API (Application Programming Inter-
face) functions, their parameters and return values, and the operations they perform.

Appendix A Built-in Constants and Defined Types. This appendix contains tables showing all of the Qlarity built-in
constants and defined types.

Appendix B Exception List. This appendix lists the names and associated descriptions of all possible exceptions.

Appendix C Qlarity Command Line Compiler. This appendix provides information on the Qlarity command line com-
piler, which is used to compile the BASIC file if you created your user application in a text editor.

Appendix D Qlarity API Functions Quick Reference List. This appendix provides an alphabetical listing of all Qlarity
API functions for quick reference.

MANUAL CONVENTIONS

The following conventions are used to identify selections in this manual.

Syntax, commands, and examples are shown in the Courier typeface: rem <comment>
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CONTENTS

CHAPTER 1.
QLARITY-BASED TERMINAL SOFTWARE FUNDAMENTALS .. 1

1.1 Qlarity-based Terminal Software .. 1
1.1.1 System Software (Firmware)... 1
1.1.2 User Application.. 1

1.2 Qlarity Programming Language .. 1
1.2.1 Object Templates... 2

1.2.1.1 Defining a New Object Template... 2
1.2.1.2 Creating Instances of an Object.. 2

1.2.2 Object Types.. 2
1.2.2.1 Non-Drawable Objects ... 2
1.2.2.2 Area Objects ... 3
1.2.2.3 Container Objects ... 3

1.3 Event Processing.. 4
1.4 Z-Order .. 4
1.5 Message Handling System... 4

1.5.1 Broadcast Messages .. 5
1.5.2 Area Messages... 5
1.5.3 Draw Messages.. 5
1.5.4 Registered Messages ... 5
1.5.5 User Messages ... 5
1.5.6 Direct Messages .. 5
1.5.7 Tool Messages ... 5
1.5.8 Handling Events .. 6

CHAPTER 2.
QLARITY LANGUAGE SYNTAX ... 7

2.1 Qlarity Statements ... 7
2.2 White Space... 7
2.3 Comments .. 7
2.4 Naming of Identifiers... 7
2.5 Built-In Data Types ... 8
2.6 User-Defined Data Types .. 8

2.6.1 Constants ... 8
2.6.2 Enumerations... 8
2.6.3 Start Type .. 9

2.7 Variables .. 9
2.7.1 Declaration .. 9
2.7.2 Variable Initialization.. 10
2.7.3 Private and Protected Variables .. 10

2.8 Object References.. 10
2.8.1 Untyped Object References... 10
2.8.2 Typed Object References .. 11
2.8.3 Special Object References... 11

2.9 Arrays .. 11
2.10 Operators ... 12

2.10.1 Arithmetic Operators ... 12
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

ii OptoTerminal Programmer’s Reference Manual
2.10.4 Dereference Operator .. 12
2.10.5 Miscellaneous Operators ... 12

2.11 Casting ... 13
2.12 Functions ... 13

2.12.1 Calling a Function ... 14
2.12.2 Private, Protected, and Fixed Functions .. 14
2.12.3 Validation Methods ... 14
2.12.4 Array Validation Functions ... 15
2.12.5 Array Element Validation Functions... 15
2.12.6 Reference Parameters .. 15

2.13 Conditionals (if Statement).. 16
2.14 Looping and Leaping... 16

2.14.1 For/Next loops ... 16
2.14.2 While Loops .. 16
2.14.3 Do/While Loops .. 17
2.14.4 Goto/Label... 17

2.15 Exception Handling ... 17
2.16 Defining Objects.. 17
2.17 Declaring Object Instances .. 18
2.18 Level .. 18
2.19 Including Files and Resources ... 18
2.20 Libraries... 19
2.21 Precompile Directives.. 19

2.21.1 #if/#else/#endif .. 19
2.21.2 #option... 19
2.21.3 #Toolimage.. 20
2.21.4 #Hidden ... 20
2.21.5 #Setfile... 20
2.21.6 #Visible ... 20
2.21.7 #Lock... 20
2.21.8 #STPBuilderApp ... 20
2.21.9 #endfile .. 20

CHAPTER 3.
MESSAGES AND MESSAGE HANDLER PROTOTYPES ... 21

3.1 Broadcast Messages... 21
3.2 Area Messages ... 21
3.3 Draw Messages.. 23
3.4 Registered Messages.. 23
3.5 User Messages ... 27

3.5.1 Defining User Messages.. 27
3.5.2 Sending User Messages... 27
3.5.3 Handlers for User Messages.. 27

3.6 Direct Messages... 28
3.7 Tool Messages ... 29
3.8 Special Messages ... 33

CHAPTER 4.
QLARITY API FUNCTION REFERENCE .. 35

4.1 Communications Interface... 35
4.1.1 Send ... 35
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual iii
4.1.2 Transmit... 35
4.1.3 SetBreak .. 35
4.1.4 GetComMessageSource .. 36
4.1.5 NetOpen... 36
4.1.6 NetServerOpen .. 37
4.1.7 NetClose .. 37
4.1.8 NetServerClose.. 37
4.1.9 ChangePort .. 38
4.1.10 TransmitUrgent ... 38
4.1.11 GetNetChannelInfo ... 38
4.1.12 SetSerialRecvSize ... 38
4.1.13 SetSerialTimeout ... 39
4.1.14 SetCTS... 39
4.1.15 ReadRTS ... 39
4.1.16 SetDSR .. 39
4.1.17 ReadDTR... 39
4.1.18 Read DCD ... 40
4.1.19 NetSendDatagram ... 40

4.2 Registering for Messages... 40
4.2.1 RegisterMsgHandler.. 40
4.2.2 UnregisterMsgHandler .. 40
4.2.3 RegisterKey ... 41

4.3 Manipulating Objects .. 41
4.3.1 GetObjref... 41
4.3.2 GetObjProp.. 41
4.3.3 SetObjProp .. 41
4.3.4 Enable .. 41
4.3.5 GetContainer ... 42
4.3.6 GetChildren ... 42
4.3.7 GetEnableInfo ... 42
4.3.8 GetPosInfo... 42
4.3.9 SetOrigin ... 43

4.4 Manipulating Z-Order.. 43
4.4.1 Attach .. 43
4.4.2 SendtoFront ... 43
4.4.3 SendtoBack.. 43
4.4.4 Raise .. 44
4.4.5 Lower... 44

4.5 Redrawing Portions of the Display.. 44
4.5.1 Rerender .. 44
4.5.2 Resize .. 44
4.5.3 Relocate ... 44

4.6 Painting to the Display .. 44
4.6.1 SetTransparent... 45
4.6.2 UseTransparent.. 45
4.6.3 SetFgColor... 45
4.6.4 SetBgColor .. 45
4.6.5 RGB... 45
4.6.6 SetPixel.. 46
4.6.7 DrawLine... 46
4.6.8 DrawBitmap .. 46
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

iv OptoTerminal Programmer’s Reference Manual
4.6.9 DrawBitmapRegion... 46
4.6.10 GetObjPixmap ... 47
4.6.11 DrawPixmap.. 47
4.6.12 DrawPixmapRegion .. 47
4.6.13 GetBitmapSize... 48
4.6.14 DrawBox ... 48
4.6.15 DrawPolygon... 48
4.6.16 DrawEllipse ... 49
4.6.17 GetEllipseSize ... 50
4.6.18 GetScreenPixmap .. 51
4.6.19 UseDrawCache .. 51
4.6.20 IgnoreDrawCache.. 51
4.6.21 DrawBorder ... 52
4.6.22 GetObjPixmapRegion ... 52

4.7 Rendering Text on the Display .. 53
4.7.1 GetBdfTextSize ... 53
4.7.2 GetBDFTextFit.. 54
4.7.3 GetBdfFontMetrics.. 56
4.7.4 DrawBdfText... 57
4.7.5 DrawBDFTextFit... 57
4.7.6 GetTTFTextSize .. 59
4.7.7 GetTTFFontMetrics... 59
4.7.8 DrawTTFText.. 60
4.7.9 SetTTFAngle ... 60
4.7.10 GetSysFontCharacters ... 61
4.7.11 GetSysTextSize ... 61
4.7.12 GetSysTextFit.. 62
4.7.13 GetSysFontMetrics .. 63
4.7.14 DrawSysText ... 63
4.7.15 DrawSysTextFit... 64

4.8 Controlling the Speaker ... 65
4.8.1 PlayNote .. 65
4.8.2 PlayNoteNotify.. 67
4.8.3 PlaySound.. 67
4.8.4 PlaySoundNotify ... 67
4.8.5 StopSpkr .. 67
4.8.6 SetVolume ... 67

4.9 Array and String Functions.. 68
4.9.1 Len... 68
4.9.2 Left .. 68
4.9.3 Right .. 68
4.9.4 Mid .. 68
4.9.5 Trim ... 68
4.9.6 Find.. 69
4.9.7 Concat.. 69
4.9.8 Redim .. 69
4.9.9 ArrayOperation.. 69
4.9.10 FreeArrayHandle ... 70
4.9.11 ReadArrayHandle .. 70
4.9.12 AllocateArrayHandle... 70
4.9.13 ReverseFind... 70
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual v
4.9.14 Replace .. 71
4.10 Conversion Functions .. 71

4.10.1 Str .. 71
4.10.2 Val ... 71
4.10.3 FromBytes ... 72
4.10.4 GetBytes .. 72
4.10.5 LowerCase... 72
4.10.6 UpperCase ... 73

4.11 Math Functions .. 73
4.11.1 Sin.. 73
4.11.2 Cos... 73
4.11.3 Tan... 73
4.11.4 Asin ... 73
4.11.5 Acos... 73
4.11.6 Atan ... 73
4.11.7 Power... 73
4.11.8 Exp... 74
4.11.9 Ln... 74
4.11.10 Sqrt .. 74

4.12 User Message Functions .. 74
4.12.1 UserBroadcastMsg .. 74
4.12.2 UserSendMsg .. 74
4.12.3 UserDirectMsg .. 75
4.12.4 FakeKeyMsg ... 75
4.12.5 FakeScreenMsg ... 75

4.13 User Input Capture... 76
4.13.1 SetCapture ... 76
4.13.2 GetCapture... 76
4.13.3 RemoveCapture ... 76

4.14 Exception Functions .. 77
4.14.1 Throw .. 77
4.14.2 GetException ... 77
4.14.3 Rethrow ... 77

4.15 User Non-Volatile Configuration Functions ... 77
4.15.1 ReadUserConfig .. 78
4.15.2 WriteUserConfig ... 78

4.16 File System Functions ... 78
4.16.1 GetAvailFilespace ... 78
4.16.2 MakeDir... 78
4.16.3 ChangeCurDir ... 78
4.16.4 GetCurDir .. 79
4.16.5 GetDirEntry ... 79
4.16.6 EraseFile .. 79
4.16.7 GetFileInfo .. 79
4.16.8 OpenFile .. 80
4.16.9 CloseFile.. 80
4.16.10 ReadFile... 80
4.16.11 WriteFile.. 81
4.16.12 SetFilePos .. 81
4.16.13 GetFilePos ... 81
4.16.14 EndOfFile .. 81
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

vi OptoTerminal Programmer’s Reference Manual
4.16.15 EraseFileSpace .. 81
4.16.16 RenameFile.. 81

4.17 Qlarity Foundry Functions... 82
4.17.1 Tool_Persist... 82
4.17.2 Tool_Trace .. 82

4.18 Miscellaneous Functions ... 82
4.18.1 SetGPIO... 82
4.18.2 ReadGPIO ... 82
4.18.3 SetGPIODirection ... 83
4.18.4 GetVersion... 83
4.18.5 GetHardwareInfo... 83
4.18.6 SetContrast .. 84
4.18.7 SetBacklight .. 85
4.18.8 EnableKeypadBacklight .. 85
4.18.9 SetLED .. 85
4.18.10 GetTime... 85
4.18.11 SetTime ... 86
4.18.12 GetTemperature... 86
4.18.13 TypeOf... 86
4.18.14 SetSystemSetting... 87
4.18.15 GetSystemSetting .. 92
4.18.16 SoftReset ... 93
4.18.17 GetRandomNum.. 93
4.18.18 SeedRandomNum.. 93
4.18.19 SetSeedRandomNum... 93
4.18.20 WatchdogEnable ... 93
4.18.21 WatchdogReset.. 94
4.18.22 GetProfileTick ... 94
4.18.23 DelayMS.. 94
4.18.24 GetBinaryResource ... 94
4.18.25 SetArrayData ... 94
4.18.26 CreateCRCTable ... 95
4.18.27 CalculateCRC.. 95
4.18.28 ZlibCompress .. 96
4.18.29 ZlibDecompress... 96
4.18.30 SetPalette ... 96

APPENDIX A.
BUILT-IN CONSTANTS AND DEFINED TYPES ... 97

A.1 Constants... 97
A.2 Tool Types .. 101
A.3 Colors.. 101
A.4 Key Codes... 101

APPENDIX B.
EXCEPTION LIST ... 105

B.1 Special Exceptions .. 105
B.2 Memory Exceptions .. 105
B.3 Message System Exceptions ... 105
B.4 Font Exceptions .. 105
B.5 Drawing Exceptions.. 105
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual vii
B.6 Array Exceptions .. 106
B.7 Z-Order Exceptions... 106
B.8 Miscellaneous Exceptions... 106
B.9 Communications/Networking Exceptions .. 106
B.10 Math Exceptions ... 107
B.11 Flash Write Exceptions ... 107
B.12 File System Exceptions... 107
B.13 Compiler Error Exceptions ... 108
B.14 Fatal Memory Exceptions ... 108
B.15 Fatal Flash Exceptions .. 108
B.16 Fatal Initialization Exceptions .. 109
B.17 Fatal Message System Exceptions .. 109
B.18 Network Fatal Exceptions... 109
B.19 Miscellaneous Fatal Exceptions.. 109
B.20 Fatal Qlarity Foundry Exceptions ... 109

APPENDIX C.
QLARITY COMMAND LINE COMPILER .. 111

APPENDIX D.
QLARITY API FUNCTIONS QUICK REFERENCE LIST ... 113
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

viii OptoTerminal Programmer’s Reference Manual
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 1

OPTOTERMINAL SOFTWARE FUNDAMENTALS

1.1 OptoTerminal Software

OptoTerminal software is divided into four major compo-
nents, as shown below.

1.1.1 System Software (Firmware)

The system software (firmware) is the terminal resident
software that controls the Qlarity-based terminal. System
software consists of the following:

• Operating system

• Qlarity™ execution engine

• Message handling system

• Qlarity API functions (operating system calls)

The following third-party components are used in the sys-
tem software:

• The operating system is based on µC/OS, the Real Time
Kernel, by Jean Labrosse.

• The FreeType library is used to render TrueType fonts.

• The TCP/IP stack is based on code in the XINU operat-
ing system, written by Douglas Comer and others.

• The ZLIB library is used for compression / decompres-
sion.

1.1.2 User Application

The user application code consists of:

• Object templates

• Global code and data

• Object instances

You can create a user application using Qlarity Foundry™,
which runs in Microsoft Windows®, or by writing a text
description of the application in the Qlarity language (using
a text editor). You then compile the design file, which con-
verts it to an application binary file that can be downloaded
to the terminal and stored in flash memory.

1.2 Qlarity Programming Language

The Qlarity language provides an object-based, event driven
framework for the user application. The user application is a
collection of objects and data that determine how a user will
interact with the terminal at runtime. You design the appli-
cation by selecting or creating “object templates” for the
objects you want to use. Each object template has properties
and methods that define the function of the object. You cre-
ate “object instances” from the object templates by setting
up the properties for each object in the user application.
Code written in Qlarity defines the objects, their properties,
and their functions.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

2 OptoTerminal Programmer’s Reference Manual
Objects are the basic units of a Qlarity application. Each
object template is an abstract representation of a user inter-
face element such as text, a picture, a line, a window, a but-
ton, and so on. The abstract representation allows you to
control each element by setting familiar properties of the
element without worrying about the low level details of the
actual manipulation.

Objects are characterized by their properties (data) and
methods (code). The properties and methods define what an
object is and how it behaves.

1.2.1 Object Templates

An object template is defined by the properties and methods
that it contains, as well as, those of the template it extends
(if any). All object instances created from the same object
template have the same number and type of properties
(although the values stored in these properties may be dif-
ferent). Similarly, all object instances from the same tem-
plate have the same list of methods (although each object
may override the default functionality of a method with
user-defined code).

Each object template can define default values for its prop-
erties and default code for its methods. When an object is
instantiated (i.e., an object instance is created from the
object template), any properties that are not explicitly given
values retain their default values. Any method that is not
explicitly overridden with user-defined code retains its
default functionality.

1.2.1.1 Defining a New Object Template

To define a new object template, you give the object a name,
declare what type of object it will be (non-drawable, area, or
container), and then add the properties and methods to the
object definition.

Variables that are created (using the dim statement) inside
the object definition are object properties. These variables
may be given a default initial value (using the init state-
ment) that will be assigned to the variable if no initial value
is given the object instance.

Functions that are created inside the object definition are
object methods. These methods may consist of ordinary
functions, validation functions, or event handlers. Methods
need not contain any actual code; however, a method must
be declared in the object definition before it can be overrid-
den in instances of that object template.

The actual syntax for defining a new object template is cov-
ered in the chapter on “Advanced Design” in the OptoTer-
minal Qlarity Foundry User’s Manual.

1.2.1.2 Creating Instances of an Object

To create instances of an object, you give the instance a
name and declare the name of the template from which the
instance will be created.

The properties of the object instance are those defined in the
template. New properties may not be defined in the
instance, but initial values for the instance may be assigned
inside the instance declaration (using the init statement).

The methods of the instance are also those defined in the
template. You may override these methods by declaring a
function inside the instance with the same name, parame-
ters, and return value as the method defined in the template.
This function replaces the template function for that
instance only. The code for the override function may call
the template method if desired.

1.2.2 Object Types

There are three basic types of object templates: non-draw-
able objects, area objects, and container objects. Each of
these object types has certain built-in functionality that
helps the system software handle the object efficiently.

1.2.2.1 Non-Drawable Objects

The non-drawable object type includes objects that do not
directly interact with the terminal display. Examples include
a keypad object (not a touch key object) and a serial com-
munications object. Non-drawable objects have the follow-
ing built-in data that is maintained by the system software
and accessible through the Qlarity API (Application Pro-
gramming Interface):

NAME (character string) – the name of the object

ENABLED (boolean) – indicates whether the object is
eligible to process messages.

PARENT (reference to container) – the parent container
for the object

Note that these attributes are NOT actual properties of the
object. However, when using Qlarity to create an object,
property variables that represent these attributes are often
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 3
added to the object. Regardless of whether the object itself
maintains properties analogous to these attributes, the
attributes must be initialized and maintained by the object
through Qlarity API function calls. The enabled status of an
object can be modified through the Enable() API function,
and the parent can be assigned with the Attach() API func-
tion. All Qlarity API functions are described in Chapter 4,
“Qlarity API Function Reference”.

1.2.2.2 Area Objects

The area object type includes objects that directly interact
with the terminal display by drawing something on the dis-
play and/or processing area-based messages. All area
objects are rectangular. Examples include a text object, a
bitmap object, and a touch key object. Area objects have the
following built-in data that is maintained by the system soft-
ware and accessible through the Qlarity API:

NAME (character string) – the name of the object

ENABLED (boolean) – indicates whether the object is
eligible to process messages

PARENT (reference to container) – the parent container
for the object

XPOSITION (integer) – the horizontal displacement (in
pixels) from the origin of the object's parent container.
Positive values indicate displacement to the right.

YPOSITION (integer) – the vertical displacement (in
pixels) from the origin of the object's parent container.
Positive values indicate downward displacement.

XSIZE (integer) – the width of the object in pixels

YSIZE (integer) – the height of the object in pixels

As with non-drawable objects, these attributes are not
strictly properties of an object, but the object often defines
analogous properties. In any event, every object of this type
must initialize and maintain these attributes through Qlarity
API function calls. The position and size of the object are
established and can be modified through the Relocate() and
Resize() API functions. The enabled status of an object can
be modified through the Enable() API function, and the par-
ent can be assigned with the Attach() API function.

The separation of these system software attributes and the
object properties provides you with the freedom to choose

properties that best describe an object. There is no need to
make the “built-in properties” or system software attributes
visible outside the object. For example, a circle object might
best be described with a center point and a radius. When
these properties are set, code inside the object calculates the
position and size from the property values and calls the
Qlarity API functions that set the attributes.

1.2.2.3 Container Objects

The container object type is very similar to the area object
type, except that container objects may “contain” other
objects. Container objects can be used to create a hierarchi-
cal organization of objects in an application; thus they are
central to the Qlarity messaging system.

Each user application starts with a “root container.” Though
invisible, it is the container in which you place all other
objects. The following illustration shows a root container
with several objects in it.

In this illustration, two container objects plus another object
are linked to the root container. In addition, each container
object has objects linked to it, which are referred to as its
“children.” The container object is the “parent.” If an object
is not attached to a container object, it is linked to the root
container by default.

All container objects are rectangular. Examples might
include a form object or a window object, which could
serve as generic containers to organize objects into areas on
the terminal display.

Container type objects have the following built-in data that
is maintained by the system software and may be set
through the Qlarity API:

NAME (character string) – the name of the object
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

4 OptoTerminal Programmer’s Reference Manual
ENABLED (boolean) – indicates whether the object is
eligible to process messages

PARENT (reference to a container) – the parent con-
tainer for the object

CHILDREN (ordered list of object references) – the list
of objects attached to the container (maintained in Z-
order, see section 1.4)

XPOSITION (integer) – the horizontal displacement (in
pixels) from the origin of the object's parent container.
Positive values indicate displacement to the right.

YPOSITION (integer) – the vertical displacement (in
pixels) from the origin of the object's parent container.
Positive values indicate downward displacement.

XSIZE (integer) – the width of the object in pixels.

YSIZE (integer) – the height of the object in pixels.

ORIGINX (integer) – the x coordinate of the top left
pixel in the container, relative to the parent container.

ORIGINY (integer) – the y coordinate of the top left
pixel in the container, relative to the parent container.

These attributes are identical to the attributes of an area type
object except for the list of children. The position and size
of the container are accessible through the Relocate() and
Resize() API functions. The enabled status of an object is
accessible through the Enable() API function, and the par-
ent and children attributes can be manipulated with the
Attach() API function and the Z-order change functions.

1.3 Event Processing

Qlarity is event-driven, which means that instead of one
long, linear program being run that has constant control of
the terminal, relatively short and independent sections of
code are run in response to specific events. These code sec-
tions are called event handlers. Typical events include: a
timer tick, a keypad press or release, a touch screen press or
release, or a serial character receive.

In Qlarity, event handlers can be defined as object methods
or global functions that are registered to handle a given

event. Events are sent through the message handling system
(see section 1.5, “Message Handling System”).

1.4 Z-Order

Z-order describes “front to back” ordering (which is the
same as the object hierarchy ordering). On a two-dimen-
sional display, where X denotes left to right spacing and Y
denotes top to bottom spacing, the Z axis extends out nor-
mal to the plane of the display. Thus, Z-ordering is the
implied third dimension on the display, allowing objects to
be “in front of” or “behind” other objects.

1.5 Message Handling System

When an event occurs, the system software (firmware) and/
or hardware drivers generate a message indicating that the
event has occurred. When a message is generated, it is
passed through the message handling system located in the
system software, which determines who gets the message
and in what order the message is processed.

An object must be enabled to process most messages. This
also causes area and container objects with non-zero area to
be drawn on the screen. Disabled containers do not process
most messages and therefore cannot pass those messages to
their children (attached objects). (Broadcast, tool, and direct
user messages are processed by enabled or disabled
objects.)

Each message is processed to completion before the next
message is examined and distributed. Processing of the cur-
rent message is never preempted by another message,
except for certain user messages. See Chapter 3, “Messages
and Message Handler Prototypes” for more details.

There are seven different types of events, classified by how
each type is handled by the messaging system, as follows:

• Broadcast messages

• Area messages

• Draw messages

• Registered messages

• User messages

• Direct messages

• Tool messages (generated only in Qlarity Foundry)
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 5
1.5.1 Broadcast Messages

Broadcast messages are sent to all objects (regardless of
enabled or disabled status) in Z-order. A message is first
passed to the root container, which passes it to each of its
children beginning with the front-most object (highest Z-
order). When the message is passed to a container object,
the container object first handles the message then passes it
to each of its children beginning with the front-most object.
In this manner, the message filters down through the object
hierarchy until all objects have received the message.

Refer to section 3.1 for a list of valid broadcast messages.

1.5.2 Area Messages

Area messages are associated with a given area, or point,
(X,Y coordinate) on the terminal display. The message is
first passed to the root container, which checks for any
enabled children that contain or overlap the area of the mes-
sage. This checking is done in Z-order, starting with the
front-most object. If a child is eligible to receive the mes-
sage, the message is passed to the child. When the message
is passed to a container object, it first handles the message
then does a similar check for enabled children which con-
tain or overlap the message area. In this manner, the mes-
sage filters down through the object hierarchy until all
eligible objects have received it.

Refer to section 3.2 for a list of valid area messages.

1.5.3 Draw Messages

A draw message is a type of area message that is processed
in reverse Z-order, or back to front (see section 1.4, “Z-
Order”).

Refer to section 3.3 for more information on draw mes-
sages.

1.5.4 Registered Messages

Registered messages are associated with system events,
such as a serial character receive or timer tick. Event han-
dlers that process these messages are registered with the
system software using registration functions in the Qlarity
API. Because these events are usually handled by a small
number of functions, registration avoids the need to filter
the message through the entire object hierarchy.

If the handler in the registration list is an object method, the
object owning the method is checked by the system soft-
ware to ensure that it and every parent container (back to the
root container) is enabled. If this condition is satisfied, the
event handler is called. Because the root container cannot be
disabled, global function event handlers are called without
this check.

If more than one object has registered for a given message,
the objects receive the message in Z-order (as with area
messages) with the root container (global handlers) receiv-
ing highest priority.

Refer to section 3.4 for a list of valid registered messages.

1.5.5 User Messages

Although hardware events are generated by the system soft-
ware, it is often desirable for the application to have the
ability to send messages to indicate software events. Qlarity
provides a mechanism to define user messages and a flexi-
ble set of Qlarity API functions to send these messages.
User messages may be broadcast messages (object may be
enabled or disabled), send messages (behave like area mes-
sages), or direct (object may be enabled or disabled).

Refer to section 3.5 for details on defining and sending user
messages and defining user message handlers.

1.5.6 Direct Messages

Direct messages are sent by the system to a specific object.
These messages are enqueued in the message queue as are
most other messages, but they are only passed to a single
object when they are handled.

Refer to section 3.6 for more information on direct mes-
sages.

1.5.7 Tool Messages

Because objects may be completely defined by the user,
Qlarity Foundry has no knowledge of the appearance or
behavior of a given object. Therefore, the object itself must
define its behavior for Qlarity Foundry development activi-
ties such as drag-and-drop, resize by dragging resize grips
on a selected object, and so on. Tool messages are generated
by the Qlarity Foundry software to tell an object that these
activities are taking place. These messages are sent directly
to the target object (i.e., they do not propagate through the
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

6 OptoTerminal Programmer’s Reference Manual
object hierarchy). The object should have message handlers
for these events to properly function in Qlarity Foundry.

Refer to section 3.7 for a list of valid tool messages.

1.5.8 Handling Events

A message is handled by defining a global function or a
function within an object that handles that event. Because
information about the event is often passed as a parameter
to the handler function, the handlers for a given message
must follow a specific format (number and type of parame-
ters and type of return value).

Often, when a message is handled by an object or function,
it is desirable that the message be terminated (i.e., not
passed on to other objects). This is indicated by the boolean
return value of the message handler. If the handler returns
true, the message is terminated. If the handler returns false,
then the message is allowed to propagate to the next eligible
object in the hierarchy. Some messages (the draw message
in particular) cannot be terminated in this manner.

If a global message handler is defined, it is considered to be
a method of the root container. It therefore will be called
before the message is passed to any other object.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 2

QLARITY LANGUAGE SYNTAX

The syntax of the Qlarity language is based on the BASIC
programming language, with extensions to handle objects,
allow structured programming, and facilitate the develop-
ment of user interface applications.

When referring to language syntax, the following notations
are used:

2.1 Qlarity Statements

A statement is defined as a single line of code. In order for
the compiler to distinguish between statements, each state-
ment must be separated by a “newline” character. If a state-
ment must be split into multiple lines, type -> at the end of
the line to tell the compiler to look for the rest of the state-
ment on the next line.

2.2 White Space

While spaces and tabs are ignored by the compiler, judi-
cious use of white space is encouraged to make programs
more readable.

2.3 Comments

Syntax:

rem <comment>
'<comment> (where'is an apostrophe)

Example:

rem this is a comment

'this is another comment

Description:

Comments help to explain and increase the readability of
the code. Comments can be placed on the same line as a
statement or they can be placed on their own line. Every-
thing between the “rem” keyword or apostrophe and the end
of the line is considered part of the comment and ignored.

NOTE:
The apostrophe character is also used to denote character
literals. For example: 'X '. For this reason, you cannot spec-
ify an apostrophe as the second character of a comment.

Example:

'I'll fix this tomorrow

Would be an error. This could be alternately written:

REM I'll fix this tomorrow

or

' I'll fix this tomorrow (space after the first
apostrophe)

There is another class of comments that may be used to
define documentation meta data for an object, property or
method. These documentation meta data comments,
referred to as AutoDoc, are used to document Qlarity
software elements and are described in the OptoTerminal
Qlarity Foundry User's Manual. Regardless of which type
of comment you use, it is ignored by the compiler.

2.4 Naming of Identifiers

Reserved keywords may not be used as object, variable, or
constant names in Qlarity. Identifier names must begin with
any letter A through Z or the underscore character (_). After
the initial character, any alphanumeric character is legal,
and names may optionally end with a #, $, or % character.
Identifier names and keywords in Qlarity are not case sensi-
tive.

Notation Description

font
Language examples are shown in
monospaced font.

[]
Any part of a statement in brackets ([])
is optional.

< >
A word that appears in angle brackets
(< >) must be replaced by an appropri-
ate name, keyword, or value.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

8 OptoTerminal Programmer’s Reference Manual
2.5 Built-In Data Types

Data types are used to tell the compiler how a specific vari-
able or property will be used. A variable must be given a
type when it is declared. The following built-in types are
supported:

2.6 User-Defined Data Types

In addition to the built-in data types, there are four kinds of
user-defined types. Objects are the major forms of user-
defined types and are described elsewhere in this manual.
Constants, enumerations, and starttypes are other user-
defined types.

NOTE:
User-defined data types must be declared in the global
space; they cannot be declared inside of object templates or
instances.

2.6.1 Constants

Syntax:

constant <name> := <value> [as <data_type>]

or

const <name> := <value> [as <data_type>]

Example:

const myConstant := 100

Description:

With the “constant” keyword, a value of any type can be
assigned to a name for use throughout the application. That
is, the value and the name are synonymous to the compiler.
If desired, the constant can be given a data type. Because it
is a constant, its value cannot be changed at runtime.

2.6.2 Enumerations

Syntax:

enumerate <enumeration_name> as <name_1> ->
[,<name_n>]

or

Data Type Description Range

integer
A 32-bit signed
whole number

-2,147,483,648 to
2,147,483,647

float
A 32-bit floating
point number

-3.402823e+38 to
3.402823e+38, small-
est positive float is
1.175494351e-38

boolean True/false TRUE, FALSE

byte
8-bit unsigned
value

0 to 255

unibyte
16-bit unsigned
value

0 to 65535

string Array of bytes

unistring Array of unibytes

color
Reference to a
color

COL_0 to COL_255

enumerations
User defined
types (integer val-
ues)

Items have integer
values

bdffont
A raster font
resource

ttfont
A TrueType font
resource

bitmap
A bitmap image
resource

objref
Reference to an
object

anytype

Any type is
allowed (only
allowed in API
functions)

Aggregate% Array of Bytes

Colormap%
8-bit unsigned
value

0 to 255

Stylemap%
32-bit signed
whole number

-2,147,483,648 to
2,147,483,647

Data Type Description Range
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 9
enumerate <enumeration_name> as <name_1> ->
:= <value_1> [,<name_2> := <value_2>]

NOTE:
The keyword “enum” can be substituted for “enumerate.”

Example:

enumerate mysize as small := 1, medium ->
:= 2, large := 3
enum stooge as larry,curly,moe,shemp
dim favorite as stooge

Description:

An enumeration allows you to define a data type that has a
restricted set of values. Any variable declared with an enu-
meration type can only hold the values defined in the enu-
meration. The default value of an enumeration is the first
value that it defines. Numeric integer values can also be
given to each enumeration item. Comparisons such as
“greater than” or “less than” can be used between variables
of the enumeration type.

In the example above, the variable “favorite” can only be
assigned the values “larry,” “curly,” “moe,” and “shemp.”

2.6.3 Start Type

Syntax:

starttype <name> as <data_type>
[<name1> := <value1>]
[<name2> := <value2>]
[etc.]

endtype

Example:

starttype control_char as byte
STX := 0x02
ETX := 0x03
ACK := 0x06
NAK := 0x15

endtype

Description:

“Starttype” is similar to an enumeration. The difference is
that the items in a “starttype” must be initialized to a value
and can be used in any mathematical operations available to
the base type. “Starttypes” can only be defined for booleans,
unibytes, bytes, integers, and floats. There is no limit to the
number of values that can be placed in a “starttype.” The
first value listed is the default.

2.7 Variables

2.7.1 Declaration

Syntax:

dimension <name> as <data_type>

or

dim <name> as <data_type>

Example:

dim myVar as integer
dimension myVar as integer

Description:

Variables that are used must be declared somewhere in the
application. A variable must be assigned a type when it is
declared.

The “dim” keyword is used to declare a variable, as shown
above. When a variable is declared, it is automatically ini-
tialized to a default value. The “init” keyword is used to ini-
tialize a variable to a specific value (see section 2.7.2).

Variables declared outside of object definitions and func-
tions are considered global. These variables are accessible
anywhere in the application.

Variables declared inside an object definition (but outside
the object methods) are considered to be properties of the
object. Each instance of an object maintains its own object
properties. Inside the object definition or instance, a vari-
able is referenced with its name only. Outside the instance
or object definition, the property of a given object instance
can be referenced using the instance name and the . (dot)
operator (as described in section 2.10.4).

Variables declared inside a function (either a global func-
tion or object methods) are local to that function and are not
accessible outside the function.

The declaration of each variable need not be stated before it
is initialized or used on a global level or in an object defini-
tion. This is not true in a function; function variable declara-
tions must appear before any other code in the function.

It is possible to declare multiple variables of the same type
on one line, as follows:
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

10 OptoTerminal Programmer’s Reference Manual
Syntax:

dim <name>, <name>, <name>, as ->
<data_type>

Example:

dim var1, var2, var3, var4 as string

2.7.2 Variable Initialization

Syntax:

init <name> := <value>

Examples:

dim myVar as integer
init myVar := 10

dim myString as string
init myString := "Hello World.\r\n"

Description:

The “init” keyword is used to initialize a variable to a speci-
fied value at compilation. Variables can be initialized with
literal values, other constants, enumerations, or names of
object instances (for objref variables). The value given must
be of the same type as the variable, and it cannot be an
expression containing another variable. Runtime changes to
variable values must take place within a function.

2.7.3 Private and Protected Variables

Syntax:

private dim <name> as <data_type>
protected dim <name> as <data_type>

Example:

private dim hiddenvar as integer

Description:

Object property variables can be declared as private or pro-
tected. A variable that is declared as private can be used
throughout the object template but cannot be referenced
outside the template (including in any object instance).

A protected variable may be accessed in the object template
and in the declaration of an object instance of that template
(i.e., in variable initializations and in override functions
within the instance). Protected variables may also be
accessed by templates that extend (inherit from) the tem-
plate in which they are defined. No other access is allowed.

2.8 Object References

Object references are variables of type “objref.” These vari-
ables can refer to an instance of an object. There are two
types of object references: typed and untyped.

When writing Qlarity code, the name of an object may be
used wherever a reference to the object is desired.

2.8.1 Untyped Object References

Syntax:

dim <name> as objref

Example:

(assume that the object “mycircle” exists)

func untypedobjref()
dim anyobject as objref
init anyobject := mycircle
[...]

endfunc

Description:

Variables of this type cannot be used to access object prop-
erties or methods, but they can be used anywhere else that
an object name or object reference is required. For example,
an objref can be passed to the Attach() API function to
attach an object to a parent container. Because they are
untyped, these variables can refer to an object of any type.

It is possible to convert an untyped object reference to a
typed object reference by converting the untyped object ref-
erence to a string then converting the string to a typed object
reference.

func ConvertToButton(untypedObj as objref)
dim buttonRef as objref ButtonV2
dim buttonName as string
buttonName = str(untypedObj)
check error

val(buttonRef, buttonName)
on error

_print("Illegal conversion")
rethrow()

enderr
return buttonRef
[...]

endfunc
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 11
2.8.2 Typed Object References

Syntax:

dim <name> as objref <template_name>
init <name> := <obj_instance>

Example:

func typedobjref()
dim bmpobjref as objref bitmapobj
init bmpobjref := mybitmap

bmpobjref.enabled := true
bmpobjref.foo(10,20)
[...]

endfunc

Description:

Variables of this type can only refer to instances of the
named template. For example, if there is an object template
“gauge” and the variable “mygauge” is an objref of
“gauge,” then “mygauge” can only refer to gauge objects
and to no other types. In addition to the capabilities of an
untyped objref, typed objrefs can be used to access proper-
ties and methods of the specified object template.

Typed objrefs are empty by default. If you use an objref that
is empty, a runtime error will occur. Use the keyword
“empty” to indicate an empty objref.

In the example above, the function has a typed objref of
type “bitmapobj” that is used to access the enabled property
of the bitmap object instance. The “bitmapobj” method
“foo” is also called.

2.8.3 Special Object References

The object reference “me” always refers to the object in
which it is used. “Me” is considered a typed object refer-
ence. “Default,” when used in the context of an untyped
object reference, refers to the root container. When
“default” is used in the context of a typed object reference,
it is the same as “empty.” The object reference "empty"
indicates that no object is referenced by this value. This is
similar to a "null" or a "nil" value in other programming
languages.

2.9 Arrays

Syntax:

dim <array_name> [<array_size>] as ->
<data_type>

init <array_name> := [<val_0>, ... , ->
<val_n-1>]

Description:

Array declaration is similar to variable declaration. The
array size is an integer value. Arrays can be declared of any
type except string and unistring. A byte array (or string)
may be assigned a string of alphanumeric characters within
double quotes. An array that is not initialized is automati-
cally initialized to the default value of the data type.

An array can be initialized with fewer values than the size
of the array. In which case, the remainder of the array is ini-
tialized to the default value.

The array size is optional. If it is omitted, the array will be
sized to the number of elements in the initialization. If the
initialization is omitted, the array will remain unsized until
it is assigned.

Array elements can be accessed using integer indices in the
array as follows:

<array_name> [<index>]

Arrays in Qlarity are zero-based; that is, the index of the
first element of an array is 0.

Example:

dim myArray[11] as byte
init myArray := "Hello World"
dim anotherArray[4] as integer
init anotherArray := [1, 2, 3, 4]

An array can be assigned to another array, as shown in the
following example. The array receiving the assignment is
automatically resized to the size of the assigned array.

Example:

func test()
dim a[2], b[2] as integer.
init a := "hi"
b = a

' a[] is being assigned to b[]
endfunc

Unlike some languages, arrays that are passed as parameters
to a function are not passed by reference unless the array
parameter to the function is a reference parameter. There-
fore, passing large arrays to functions can be computation-
ally expensive.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

12 OptoTerminal Programmer’s Reference Manual
2.10 Operators

2.10.1 Arithmetic Operators

Arithmetic operators can be used with any float, integer,
byte or unibyte value.

2.10.2 Boolean Operators

2.10.3 Assignment Operators

See section 2.12.3 for an explanation of validation methods.

2.10.4 Dereference Operator

2.10.5 Miscellaneous Operators

Line Continuation

Strings (enclosed in double or single quotes; e.g., “Hello
world”)

Operator Description

+ Addition operator

- Subtraction operator

∗ Multiplication operator

/ Division operator

mod
Modulus operator (cannot be used
with floats)

Operator Description

not or ! NOT operator1

1. Can be used with variables, literals, or constants of the fol-
lowing types: boolean, byte, unibyte.

and or & AND operator1

or or | OR operator1

xor or ^ XOR operator1

<= Less than or equal to2

2. Can be used with variables, literals, or constants of the fol-
lowing types: float, integer, byte, unibyte, and arrays of those
types. A boolean expression is generated.

>= Greater than or equal to2

< Less than2

> Greater than2

== Equals operator3

3. Can be used with variables, literals, constants, or arrays of
any type. A boolean expression is generated.

<> Not equal to3

Operator Description

:=

Strict assignment operator. This must be used
anytime a variable or constant is initialized.
No validation is performed on the assign-
ment. In most cases, this operator should not
be used to assign properties of other objects
because no validation will be performed.

=

Validation assignment operator. This operator
is the same as := unless a validation function
with the same name as the variable was writ-
ten. If this is the case, then a validation is per-
formed. Validation functions are discussed
later. Generally, this operator should be used
except when initializing a variable or assign-
ing a value inside a validation function.

Operator Description

.

This operator allows access to object proper-
ties and methods from outside the object. The
dot is placed between the object name or ref-
erence and the property or method that will
be accessed.

Operator Description

->
This construct is used to continue a statement
on the next line if it is too long. This can
increase the readability of your code.

Operator Description

\n Newline character

\r Carriage return
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 13
2.11 Casting

It is possible to convert a value from one numeric data type
to another. While Qlarity will automatically convert data
types when necessary, it is occasionally useful to manually
cast a value to a new data type. You can cast values to the
following built-in data types:

integer
float
byte
unibyte

Additionally, you can cast the keyword “default” to type
“objref.”

To cast a value, type the data type to which you want to cast,
and then enter the value to cast in parentheses. You can use
the casting operators as part of any legal expression.

Example:

'Calculate the sum of two simulated dice
die1 = integer(6∗GetRandomNum()) + 1
die2 = integer(6∗GetRandomNum()) + 1
diceTotal = die1 + die2

Casting is commonly used to allow integer literals to be
used with bitwise operators such as the AND operator:

'Calculate the red, green, and blue ->
components for a given color.

'The resultant values range from 0 to 7
rValue = (myColor and byte(0xE0)) / 32
gValue = (myColor and byte(0x1C)) / 4
bValue = myColor and byte(0x03) ∗ 2

Casting a value may cause a loss of precision if the target
data type is incapable of expressing the original value. For
example, the expression “integer(6.7)” produces the value 6

(since integers cannot express fractional values), and the
expression “byte(257)” produces the value 1 (since bytes
can only express values from 0 to 255).

You may cast the keyword “default” to any of the allowed
casting data types. The default value for integer, float, byte,
and unibyte is zero (0). You may also cast “default” to an
“objref.” The value obtained from this cast is the root or
global container. This is useful for certain comparisons; for
example:

if parent == objref(default) then
transmit (com1, str(me) + ->

"is attached to ROOT.\n", false)
endif

2.12 Functions

Syntax:

func <name> ([<var> as <data_type>, ...]) ->
[returns <data_type>]
[handles <msg_name>]
[Variable declarations and ->

initializations]
[statements...]

endfunc

Example:

func circ_area(x as float) returns float
dim pi as integer
init pi := 3.1415927
return x∗x∗pi

endfunc

Description:

A function can contain any number of input parameters
(separated by commas) and statements. If the function han-
dles any event messages, the “handles” statement is used.
The “handles” statement must be the first statement in the
function. The “dim” and “init” statements must be the next
statements in a function. The actual order of “dim” and
“init” statements is unimportant.

When a message is received by an object, the function that
handles the message is called. The “handles” statement
specifies the message type that must be sent for the function
to be called. There can be more than one “handles” message
in a function as long as they appear before any other decla-
ration or statement. See Chapter 3, “Messages and Message
Handler Prototypes” for a complete listing of messages.

\xDD

Represents a hexadecimal value where each
“D” is 0 through 9 or A through F. You must
use two hexadecimal digits; for example,
\x00 not \x0, \x0A not \xA, and so on.

\\ Backslash character

\" Quotation marks

\' Apostrophe

Operator Description
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

14 OptoTerminal Programmer’s Reference Manual
Variables declared inside the function are local to that func-
tion and cannot be accessed from outside the function.

The “returns” clause specifies the type of value that is
returned from the function. If a returns type is specified,
then the function is required to return a value of that type.
The value is passed back from the function using the
“return” statement, which also terminates the function.
Multiple “return” statements can be included in a function
in separate execution paths. The first “return” statement
executed will end the function. Return statements with no
value may be used to terminate a function with no return
value. Functions with no return value have an implied return
at the “endfunc” statement.

The actual code for the function is entered between the local
variable declarations and initialization (if any) and the “end-
func” statement.

Example:

func getChar(data[] as byte) returns boolean
handles msg_comm_receive
dim newData[5] as byte
init newData := [10,20,30,40,50]
dim countdown, countup as integer
init countup := 0
if len(data) == 5

for countdown = 4 to 0 step -1
newData[countup] =

data[countdown]
countup = countup +1

next
endif

return true
endfunc

2.12.1 Calling a Function

Use the following syntax to call a function:

<funcname>(<parameter>, ...)

Use the following syntax to call an object method:

<objname>.<funcname>(<parameter>, ...)

The parameters to call a function can be literal values, vari-
ables of the correct data type, or expressions that produce
the correct data type.

2.12.2 Private, Protected, and Fixed Functions

Syntax:

private func <name> (<parameters>)
[...]

endfunc

protected func <name> (<parameters>)
[...]

endfunc

fixed func <name> (<parameters>)
[...]

endfunc

protected fixed func <name> (<parameters>)
[...]

endfunc

Description:

A function can be declared private or protected. A function
that is declared private can be used throughout the definition
of an object but cannot be overridden and cannot be called
from outside the object definition.

A protected function may be accessed in the object template
and in the declaration of an object instance of that template
(i.e., in override functions within the instance). Protected
functions may also be accessed by templates that extend
(inherit from) the template in which they are defined. No
other access is allowed.

A function can also be declared fixed or protected fixed. A
fixed function cannot be overridden. A protected fixed func-
tion cannot be overwritten either in an instance of the tem-
plate or in another template that extends the template which
defines the fixed function. Additionally, the protected fixed
function, like a protected function, may only be used my
instances of the template and by other templates which
extend the template.

2.12.3 Validation Methods

A very powerful and useful feature of Qlarity is the valida-
tion method. These special functions are tied to variables
(usually object properties). When the variable is assigned a
value using the validation assignment operator (=), the vali-
dation method is implicitly called and passed the new value
as a parameter. This allows the object property or global
variable to perform validation on the new value (e.g., is the
value within allowable bounds?) and to perform other
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 15
actions that update the state of the object or variable in the
application.

Qlarity objects derive much of their power from this feature.
For example, a simple area object might have properties
defining the location of the object on the display. The vali-
dation methods for the x- and y-position properties might
check to make sure that the value is within the boundaries of
the screen and call Qlarity API functions to redraw the
object at the new location. All of this occurs from simple
assignment of a new value to the object property.

A validation function must have the same name as the vari-
able being validated. Also, there can be only one parameter
to the function, and it must be of the same data type as the
associated variable. Otherwise, these functions have the
same syntax as normal functions.

IMPORTANT:
Do not use the validation assignment operator on the
validated variable within the validation method! This
will recursively call the validation function until the system
software gives an exception.

Example:

dim x as integer
dim flag as integer
func x (newval as integer)

if newval > 20 & newval < 100 then
x := newval

else
flag := -1

endif
endfunc

In this example, if the new value being assigned is not
between 20 and 100, then flag is given -1 and x retains its
old value. If no new value is assigned to the variable during
its validation function, then it will retain its old value.

2.12.4 Array Validation Functions

Syntax:

func <array_name> (<newarray>[]as ->
<data_type)

[statements...]
endfunc

These functions are called when the entire array is assigned
a new value with the validation assignment operator.

Example:

dim array1[10], array2[20] as integer
array1 = array2

If a validation function for “array1” exists, it will be called
and passed to “array2” as a parameter.

Example:

dim myarray[10] as integer

func myarray(newarray[] as integer)
if len(newarray) > 10 then

myarray := newarray
endif

endfunc

2.12.5 Array Element Validation Functions

Syntax:

func <array_name>[] (<new_value> as ->
<data_type>, <index> as integer)

[statements...]
endfunc

Description:

These functions are called whenever an element of an array
is assigned a new value with the validation assignment oper-
ator.

The “<index>” parameter contains the index of the array
that is being assigned a new value.

Example:

dim myarray[10] as integer

func myarray[](newval as integer, index ->
as integer)

if index == 0 then
if newval > 10 then

myarray[index] := newval
endif

endif
endfunc

2.12.6 Reference Parameters

Syntax:

func <func_name> (<varname> as reference ->
to <datatype>)

[...]
endfunc
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

16 OptoTerminal Programmer’s Reference Manual
Description:

Qlarity normally uses a pass by value convention, which
means that functions receive a copy of variables passed as
parameters. They cannot modify the value of the original
variable. Reference parameters make it possible to modify
the values of the variables that are passed into a function as
parameters. These are especially useful when a function
needs to return more than one value.

Example:

func myFunc(newVar as reference to integer)
newVar=5

endfunc

When “myFunc” is executed, a reference to the variable is
passed into the function. The value of “newVar” reflects the
change after the function returns.

2.13 Conditionals (if Statement)

Syntax:

if <boolean_expr> then
[...]

[elseif <boolean_expr> then]
[...]

[else]
[...]

endif

The “then” is required. The “elseif” and “else” statements
are optional. There is no limit to the number of “elseif”
clauses that can be added to the “if” statement

Example:

dim x as integer
if x < 10 then

x = x +1
elseif x == 10 then

x=x+2
else

x=x-2
endif

2.14 Looping and Leaping

2.14.1 For/Next loops

Syntax:

for <name> = <start_expression> to ->
<stop_expression> [step <expression>]

[...]
next

Description:

The “for” loop executes starting with “<name> =
<start_expression>” and increments “<name>” by the
amount specified in “step” until “<name>” is equal to
“<stop_expression>.” “Step” may be positive or negative. If
no “step” is specified, “<name>” is incremented by 1. When
“<name> = <stop_expression>,” the loop executes for the
last time.

If “<name>” has a validation function, it is called each time
through the loop. When the loop terminates, “<name>” will
have been incremented or decremented beyond
“<stop_expression>.” (In the example below, the final value
for “countdown” is -1.) Also, “<stop_expression>” is evalu-
ated each time through the loop. If “<stop_expression>” is
complex or involves a function call, and the value of
“<stop_expression>” does not change, it is recommended
that you store the value of “<stop_expression>” in a vari-
able and use that for “<stop_expression>.”

Example:

dim Data[5] as byte
init Data := [10, 20, 30, 40, 50]
dim stepamount as integer
init stepamount := -1
dim countdown, countup as integer
init countup := 0

for countdown = 4 to 0 step stepamount

newData[countup] = data[countdown]
countup = countup +1

next

2.14.2 While Loops

Syntax:

while <boolean_expression> do
[...]

loop

Description:

The statements inside the “while” loop are executed until
the boolean expression becomes false. If the boolean is false
before the “while” loop starts, then the loop is not executed.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 17
2.14.3 Do/While Loops

Syntax:

do
[...]

loop while <boolean_expression>

Description:

The “do/while” loop is similar to the “while” loop except
that it will always execute at least once. The boolean
expression is evaluated each time execution reaches the end
of the loop. When the expression becomes false, the loop is
finished.

2.14.4 Goto/Label

Syntax:

goto <label_name>

label <label_name>

Description:

The “goto” command is used to stop executing the code at
the “goto” command and begin where the “<label_name>”
is specified.

The “label” command is used to mark a spot to be jumped
to with the “goto” command.

These two statements must appear within the same function.
Jumping between functions is not allowed. Also, you cannot
jump into, out of, or between different “check error” blocks.
It is generally good coding practice to avoid “goto” when-
ever possible.

2.15 Exception Handling

Syntax:

check error
[...]

on error
[...]

enderr

Description:

The purpose of the “check error” block is to check for an
error and then resolve the error. The code between “check
error” and “on error” is executed normally. If an exception
is thrown by the system or by using the Throw() API func-
tion, then execution immediately jumps to the first state-

ment in the “on error” block with no option to return to the
previous execution point.

Within the “on error” block, the application can retrieve the
last exception using the GetException() API function. Code
in the “on error” block is intended to handle exceptions in a
manner defined by the application. If the “on error” block
doesn’t resolve the exception, it can call Rethrow() to allow
a higher level “check error” to handle it.

If no “check error” block appears in the function, the error
“bubbles up” to the function that called it and eventually out
to the system where MSG_ERROR functions can handle it.

For more detailed information on exception handling, refer
to the section onf “Exception Handling in the OptoTerminal
Qlarity Foundry User’s Manual.

2.16 Defining Objects

Syntax:

define <object_type> type <name> [extends ->
<Name>]
[...]

enddef

Description:

An object type must be defined in order for an instance of
that object to be declared. Object properties are defined
using “dim” statements. Default values are assigned using
“init” statements. Methods are defined by putting function
definitions inside the definition of the object. Any instances
of an object type will have these properties and functions.

“<object_type>” may be any of the three object type key-
words: “object,” “area object,” or “container.” “<name>”
may be any legal and unique identifier and becomes the
name of the defined object type.

"Extends" indicates that this template will extend the tem-
plate <name>, where <name> is the name of the template
this one will extend. By extending a template, the new tem-
plate will inherit all methods and properties of the base tem-
plate.

Extending templates via inheritance can be a powerful tool
to allow you to reuse existing code and create modified
objects quickly. When extending templates there are several
items to remember.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

18 OptoTerminal Programmer’s Reference Manual
• The extending template receives all of the base tem-
plate’s variables and functions. Care should be exer-
cised not to declare any variables or functions with
the same name as those in the base template unless
the extending template is overriding those elements

• The extending template may not access the base
template's private variables and functions

• The extending template may override any variable
declaration, variable initialization or function defini-
tion.

• When overriding a variable or function, the extend-
ing template may reduce the access to the element.
For instance, a template may override a protected
variable declaration in a base template as private.
Conversely, it is not allowed to increase access to an
element in the extending template. For example, you
could not override a private function in a base tem-
plate as protected in the extending template.

• An extending template may add validation functions
for variables in a base template. The compiler will
issue a warning for this unless you also override the
variable in the extending template.

• An extending template may add variables that would
be validated by functions in the base template. As
this is usually undesired behavior, the compiler will
issue a warning in this case. To avoid the warning
either rename the variable or override the validation
function in the extending template.

Chapter 10 in the OptoTerminal Qlarity Foundry User’s
Manual gives examples of defining an object type and creat-
ing instances of the object.

2.17 Declaring Object Instances

Syntax:

declare <name> as <defined_type>
[...]

enddec

Description:

Once an object type is defined, instances of that object may
be created by declaring them.

“<name>” may be any legal unique identifier; it is used to
refer to the instance of the object. “<defined_type>” is the
name of the object type, and it specifies the template to be
used when creating the object instance.

All functions and properties defined for an object type will
be included in any instance of that type.

Variables may not be created using a “dim” statement inside
an object instance, but they may be given initial values for
that instance using “init” statements.

Functions declared in an instance must also have been
declared in the object template; they will override the func-
tions in the template. The function name, events handled,
parameters, name, type, and return type must match the dec-
laration of the function in the template.

Chapter 10 in the OptoTerminal Qlarity Foundry User’s
Manual gives examples of defining an object type and creat-
ing instances of the object.

2.18 Level

Syntax:

Level <integer>

Description:

The “Level” command specifies the Z-order of an instance
at application startup. Instances with a higher level appear
higher (towards the front) in the Z-order. If two instances
have the same level, then their Z-order relative to each other
is undefined. This directive must immediately follow a
“declare” statement. Qlarity Foundry normally sets this
directive based on the object’s location in the Object Tree.

This command is useful when writing Qlarity applications
in a text editor. Qlarity Foundry typically ignores any Level
commands typed in the Code View window.

2.19 Including Files and Resources

Syntax:

include "<file path>"

Description:

This includes the specified file to be compiled with your
project. The “include” command is also used to make bit-
maps, ttfonts, and bdffonts available as resources in the
application.

Syntax:

include bitmap "<bitmap_file_path>" as ->
<name>
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 19
include ttfont "<ttfont_file_path>" as ->
<name>
include bdffont "<bdffont_file_path>" as ->
<name>

Description:

The “<name>” field is any name to be used to refer to the
included bitmap, ttfont, or bdffont. If the keyword default is
used as the name of the resource, then that bitmap, ttfont, or
bdffont becomes the default resource of that type. Resource
variables that are not explicitly initialized will receive the
default resource.

Since the backslash (\) character is a special character used
in strings, it is necessary to use either a single forward slash
(/) or a double backslash (\\) to separate directories in file
paths.

2.20 Libraries

Libraries are similar to other files that can be included
except they may contain more than just source code. A
library may contain any of the following:

• Qlarity source code

• Native source code

• Bitmaps

• BDF fonts

• TrueType fonts

• Modules

To include a library:

Syntax:

Include library "<file_name>"

The library “natives.lib” is automatically included by the
compiler. Do not manually include this file in your project.
See Chapter 10 of the OptoTerminal Qlarity Foundry User’s
Manual for more information on libraries.

Including a library simply informs the compiler of the exist-
ence of the library. To use the code or other entries in a
library, you must reference them explicitly, as shown below.

Syntax:

Library <library name><entry type><entry ->
name>

Description:

“<library name>” is the name of the library in which the
entry resides. This is generally different from the library file
name. “<entry type>” is the type of entry in the library:
source, bitmap, bdffont, ttfont, native, or module. “<entry
name>” is the name of the library entry.

By referencing the library entries explicitly, you can use
only the entries you want. Qlarity Foundry may bring in
certain library entries automatically. To determine the name
of a library and the names and types of entries in it, refer to
the documentation that came with the library, or view the
library in Qlarity Foundry.

2.21 Precompile Directives

2.21.1 #if/#else/#endif

Syntax:

#if <option_name>
[statements...]

#else
[statements...]

#endif

Description:

“#if” statements are used by the compiler to determine if an
option has been declared. If so, the code between the “#if”
and the “#else” or “#endif” is compiled into the project.
Otherwise, the enclosed code is not compiled. Code in the
“#else” section is compiled only if the option was not
declared.

#ifnot/#else/#endif is also a legal construct, where the code
between the #if and the #else or #endif is compiled if the
option is not declared. Otherwise, the enclosed code is com-
piled. Code in the #else section is compiled only if the
option was previously declared.

2.21.2 #option

Syntax:

#option <option_name>

Description:

This function is used to define a keyword that will be
checked by the “#if” statement. Unlike Qlarity variables, a
“#option” declaration for a given keyword must be used
before it can be examined by the “#if” statement.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

20 OptoTerminal Programmer’s Reference Manual
A common predefined option is “_TOOL,” which is defined
if Qlarity Foundry is currently running the application.
Code that should only run in Qlarity Foundry (and be
excluded from the application that runs in the terminal)
should be enclosed in an “#if _TOOL/ #endif” block.

2.21.3 #Toolimage

Syntax:

#Toolimage <string of hexadecimal digits>

Description:

This directive defines the icon used by a template and
instances of the template in Qlarity Foundry. Qlarity
Foundry automatically generates and updates the “#Toolim-
age” line for each template in a workspace. The line with
the “#Toolimage” directive must follow a template defini-
tion statement, and it must appear before any code in the
template. Manually editing a “#Toolimage” line is not rec-
ommended. This directive is ignored when a workspace is
compiled with the command line compiler.

2.21.4 #Hidden

Syntax:

#Hidden <dimension statement>

Description:

This directive informs the Qlarity Foundry compiler that the
variables declared in “<dimension statement>” should not
be displayed in the Object Properties list. This only applies
to global variables and object properties; it has no effect on
local variables in a function. This directive is ignored when
a workspace is compiled with the command line compiler.

2.21.5 #Setfile

Syntax:

#Setfile <line number> <filename>

Description:

This directive tells the compiler to change file names and
line numbers for error reporting. The line number is imme-
diately set to “<line number>.” Qlarity Foundry uses this
directive internally and ignores any such directives typed in
by the user. Altering these directives is not recommended.

2.21.6 #Visible

Syntax:

#Visible <true or false>

Description:

This directive informs Qlarity Foundry about the visible
state of an object (i.e., whether an object should be dis-
played or hidden). Normally, Qlarity Foundry inserts or
alters this directive whenever you click on the “eye” icon in
the Object Tree. This directive is ignored when a workspace
is compiled with the command line compiler.

2.21.7 #Lock

Syntax:

#Lock <true, false, or me>

Description:

This directive informs Qlarity Foundry about the lock state
of an object (i.e., whether an object or its children can be
altered in Qlarity Foundry). Normally, Qlarity Foundry
inserts or alters this directive whenever you click on the
“lock” icon in the Object Tree. This directive is ignored
when a workspace is compiled with the command line com-
piler.

2.21.8 #STPBuilderApp

Syntax:

#STPBuilderApp

Description:

This directive appears on the first line of a workspace that
has been saved by Qlarity Foundry. It is ignored when a
workspace is compiled with the command line compiler.

2.21.9 #endfile

Syntax:

#endfile

Description:

This directive instructs the compiler to immediately cease
processing the current file. Any code after the “#endfile”
directive is ignored.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 3

MESSAGES AND MESSAGE HANDLER PROTOTYPES

In Qlarity, functions that handle messages must fit a speci-
fied format, or number and type of parameters, and the type
of return value. The message handler formats may vary
depending on whether the message is being handled by a
global function, a function inside a container type object, or
a function inside an area or non-drawable object.

Message handler functions that return a boolean value can
typically terminate the message (stop it from moving for-
ward through the message handling system) by returning a
value of “true.” Returning a value of “false” allows the mes-
sage to continue on through the message handling system.

Descriptions of all system messages are provided in this
chapter. Included is the format (number and types of param-
eters and return type) used to declare a handler for each
message.

3.1 Broadcast Messages

Broadcast messages are sent to all objects (regardless of
their enabled or disabled status) according to the Z-order. A
message is first passed to the root container (where it is pos-
sibly handled by global functions), which then passes the
message to each of its children, beginning with the front-
most object (highest Z-order). When the message is passed
to a container object, the container object first handles the
message then passes it to each of its children, beginning
with the front-most object. In this manner, the message fil-
ters down through the object hierarchy until all objects have
received the message.

Broadcast message handlers do not have a return value and,
therefore, cannot terminate the message.

Message:

MSG_INIT

Description:

This message is sent to all objects on system startup. It is
the first message generated in the system. It allows each
object to synchronize its system software attributes
(enabled, parent, position, size, etc.) with its properties and

to perform other startup functions. Do not rely on the order
of reception for the init message (don’t assume others are
already inited).

Handler Format:

func <name>()
handles MSG_INIT
[...]

endfunc

MSG_INIT handlers take no parameters and do not have a
return value.

3.2 Area Messages

Area messages are associated with a given area, or point,
(X,Y coordinate) on the terminal display. A message is first
passed to the root container (where it is possibly handled by
global functions), which then checks for any enabled chil-
dren that contain or overlap the area of the message. This
checking is done in Z-order, starting with the front-most
object. If a child is eligible to receive the message, the mes-
sage is passed to the child. When the message is passed to a
container object (including the root container), it first han-
dles the message then does a similar check for enabled chil-
dren that contain or overlap the message area. After all of a
container's children have received the message, the handler
in the container (if any) is called a second time. In this man-
ner, the message filters down through and back up the
object hierarchy until all eligible objects have received it.

Global area message handlers are considered to be methods
of the root container. They are therefore eligible to receive a
message twice (once before any of the root's children and
once after all of root's children have received the message).
Only area and container objects can receive area messages.
Non-drawable objects are not eligible to handle them.

The parameters of an area message handler indicate the
location of the event on the screen. Area message handlers
have a boolean return value used to terminate the message.
Returning a value of “true” terminates the message, while
returning a value of “false” allows the message to continue
through the message handling system.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

22 OptoTerminal Programmer’s Reference Manual
The format for the handler is different for container and area
objects. Containers have an additional boolean parameter.
The value of this parameter is “false” when the container
handler is called before the message passes to the con-
tainer's children. When the handler is called after the con-
tainer's children have received the message, the value of this
parameter is “true.” A container, such as a form object, that
doesn’t handle an area message directly (e.g., a screen
press) generally returns “false” the first time the handler is
called. This allows the container’s children to handle the
message. However, “true” is returned on the second call to
prevent objects behind the container (and therefore hidden)
from receiving the message.

Message:

MSG_SCREEN_PRESS

Description:

This message indicates that a touch screen press event has
occurred.

Handler Format:

(if handled by a container object/global)

func <name>(<x> as integer, <y> as ->
integer, pass as boolean) returns boolean

handles MSG_SCREEN_PRESS
[...]

endfunc

(if handled by an area object)

func <name> (<x> as integer, <y> as ->
integer, returns boolean

handles MSG_SCREEN_PRESS
[...]

endfunc

Parameters:

<x>
The x-location of press event (with respect to the parent's
origin)

<y>
The y-location of press event (with respect to the parent's
origin)

<pass>
False if the container's children have not yet received the

message, and true if the container's children have already
received the message.

Message:

MSG_SCREEN_RELEASE

Description:

This message indicates that a touch screen release event has
occurred.

Handler Format:

(if handled by a container object/global)

func <name> (<x> as integer, <y> as ->
integer, pass as boolean) returns boolean

handles MSG_SCREEN_RELEASE
[...]

endfunc

(if handled by an area object)

func <name> (<x> as integer, <y> as ->
integer returns boolean

handles MSG_SCREEN_RELEASE
[...]

endfunc

Parameters:

<x>
The x-location of press event (with respect to the parent's
origin)

<y>
The y-location of the press event (with respect to the par-
ent's origin)

<pass>
False if the container's children have not yet received the
message, and true if the container's children have already
received the message.

Message:

MSG_SCREEN_MOVE

Description:

This message indicates that the user has moved his or her
finger across the touch screen without lifting it. Objects
whose area contains the starting or ending (or both) coordi-
nates receive this message.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 23
Handler Format:

(if handled by a container object)

func <name> (<x_to> as integer, <y_to> as ->
integer, <x_from> as integer, <y_from> as ->
integer, <pass> as boolean) returns boolean

handles MSG_SCREEN_MOVE
[...]

endfunc

(if handled by an area object)

func <name> (<xto> as integer, <yto> as ->
integer, <xfrom> as integer, <yfrom> as ->
integer) returns boolean

handles MSG_SCREEN_MOVE
[...]

endfunc

Parameters:

<x_to>
The final x-location after the move (with respect to the par-
ent's origin).

<y_to>
The final y-location after the move (with respect to the par-
ent's origin).

<x_from>
The initial x-location before the move (with respect to the
parent's origin).

<y_from>
The initial y-location before the move (with respect to the
parent's origin).

<pass>
False if the container's children have not yet received the
message, and true if the container's children have already
received the message.

3.3 Draw Messages

A draw message cannot be terminated, and it is passed to
containers (including the root container) twice, as described
in section 3.2, “Area Messages.” This allows the container
to draw borders around itself or perform other actions that
should take place after the container’s children have fin-
ished handling the message.

Unlike area messages, the actual invalid region is not passed
to the handler as a set of parameters. Rather, the handler

should just repaint the object entirely, and the system soft-
ware clips the repainted region to the invalid region.

Non-drawable objects are not eligible to receive this mes-
sage.

Draw messages are handled by the system as a low priority.
Draw messages are placed in a separate message queue that
is serviced when the regular message queue is empty. Also,
the system software may combine multiple invalid regions
into a single draw message to increase drawing efficiency.

Message:

MSG_DRAW

Description:

This message indicates that the receiving object needs to
paint itself on the screen.

Handler Format:

(if handled by a container object)

func <name> (<pass> as boolean)
handles MSG_DRAW
[...]

endfunc

(if handled by an area object)

func <name>()
handles MSG_DRAW
[...]

endfunc

Parameters:

(if handled by a container object)

<pass>
False if the container's children have not yet received the
message, and true if the container's children have already
received the message. A container should draw its back-
ground when “pass = false” and its borders when “pass =
true.”

(if handled by an area object)

No parameters.

3.4 Registered Messages

Registered messages are associated with system events such
as a serial character receive, network packet receive, or
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

24 OptoTerminal Programmer’s Reference Manual
timer tick. Event handlers that process these messages are
registered with the system software using registration func-
tions in the Qlarity API. Because these events are usually
handled by a small number of functions, registration avoids
the need to filter the message through the entire object hier-
archy. If the handler in the registration list is an object
method, the object owning the method is checked by the
system software to ensure that it and every parent container
(back to the root container) are enabled. If this condition is
satisfied, the event handler is called. Because the root con-
tainer cannot be disabled, global function event handlers are
called without this check. If more than one object has regis-
tered for a given message, the objects receive the message
in Z-order (as with area messages) with the root container
(global handlers) receiving highest priority.

Objects with handlers for registered messages may be regis-
tered to receive these messages by calling the RegisterMsg-
Handler() API function. This is typically done in the
MSG_INIT handler for the object, but it can be done at any
time. Each different type of message must be registered
individually for a given object.

Key handlers are registered using the RegisterKey() API
function. Objects may be registered for a specific key or for
all keys (using the parameter KEY_ALL). The actual key-
code is passed to the handler as a parameter, so a handler
registered for KEY_ALL can determine what key was
pressed or released. A list of constants defining all keys for
the keyboard or keypad is included in Appendix A, “Built-
in Constants and Defined Types”.

Registered objects may also be unregistered by calling the
UnregisterMsgHandler() API function, after which the
object will no longer receive the message. To unregister a
key handler, register the object with the parameter
KEY_NONE.

The key messages MSG_KEY_DOWN, MSG_KEY_
PRESS, and MSG_KEY_RELEASE are similar to area
messages in that container objects receive the message
twice: once before it is passed to the container’s children,
and once after all of its children have received it. A boolean
parameter is used to indicate which pass is taking place
when the handler is called. The parameter value is false if
the children have not yet received the message, and true if
the children have already received it.

Also similar to area message handlers, registered message
handlers return a boolean value that is used to terminate the
message. Returning a value of “true” from the handler ter-

minates the message, while returning a value of “false”
allows the message to continue on through the system.

NOTE:
The messages MSG_COMM_RECEIVE,
MSG_COMM_RECEIVE_URGENT and
MSG_COMM_RECEIVE_MULTICAST are all registered
for at the same time. In other words, if an object registers
for one of these messages, then it registers for all of them.

Message:

MSG_COMM_RECEIVE

Description:

This message indicates that one or more characters have
been received from a communications interface (COM port
or Ethernet port). You can register for multiple communica-
tions resources. As a result, you will receive this message
each time data is received from any one of the resources for
which you are registered. Use the GetComMessageSource
API to determine the communications resource that resulted
in the generation of this message.

Handler Format:

func <name> (<data>[] as byte) returns ->
boolean

handles MSG_COMM_RECEIVE
[...]

endfunc

Parameters:

<data>
A byte array containing the data that was received from the
communications interface.

Message:

MSG_COMM_RECEIVE_URGENT

Description:

This message indicates that one or more characters have
been received via the Transmission Control Protocol (TCP)
urgent or out-of-band data channel. This message is only
generated by a TCP communications resource. You can reg-
ister for multiple communications resources. As a result,
you will receive this message each time data is received
from any one of the resources for which you are registered.
Use the GetComMessageSource API to determine the com-
munications resource that resulted in the generation of this
message.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 25
Handler Format:

func <name> (<data>[] as byte) returns ->
boolean

handles MSG_COMM_RECEIVE_URGENT
[...]

endfunc

Parameters:

<data>
A byte array containing the data that was received via a
TCP urgent data channel.

Message:

MSG_COMM_RECEIVE_MULTICAST

Description:

This message indicates that a packet has been received from
a multicast communications interface. You can register for
multiple communications resources. As a result, you will
receive this message each time data is received from any
one of the resources for which you are registered. Use the
GetComMessageSource API to determine the communica-
tions resource that resulted in the generation of this mes-
sage.

Handler Format:

func <name> (<data>[] as byte, <lport> as ->
unibyte, <fport> as unibyte, <ip>[] as ->
byte) returns boolean
 handles MSG_COMM_RECEIVE_MULTICAST

[...]
endfunc

Parameters:

<data>
A byte array containing the information that was received
from the communications interface.

<lport>
The local port number on the unit that the received data was
destined for.

<fport>
The foreign port number on the host that was the origin of
the data.

<ip>
The IP address of the host that was the origin of the data.

Message:

MSG_COMM_TRANSMIT

Description:

This message indicates that one or more characters are to be
transmitted by the communications interface. (EIA-232, -
422, -485, Ethernet, etc.) This message is generated by call-
ing the Send() API function, and it is useful for implement-
ing a protocolizing function (adding a header, tail,
checksum, etc.) for transmitted data in a single location.
Handlers for this message should call the Transmit() API
function to actually send the data.

Handler Format:

func <name> (<data>[] as byte) returns ->
boolean

handles MSG_COMM_TRANSMIT
[...]

endfunc

Parameters:

<data>
A byte array containing the data that is to be transmitted by
the communications interface.

Message:

MSG_TIMETICK

Description:

This message indicates that a system timer has expired.
When registering for this message, an object specifies the
interval between messages in 20 millisecond increments.
The minimum interval is 40 milliseconds. A
MSG_TIMETICK message is sent to the registered object
at each time interval.

Handler Format:

func <name> ()
handles MSG_TIMETICK
[...]

endfunc

Handlers for MSG_TIMETICK have no parameters and no
return value.

Message:

MSG_KEY_DOWN
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

26 OptoTerminal Programmer’s Reference Manual
Description:

This message indicates that a key has been pressed on the
keyboard or keypad. The keyboard and keypad are distin-
guished by unique keycodes. If the key repeat feature is
available on the keyboard or keypad and the key is held
down, then the MSG_KEY_DOWN will only occur on the
initial press (not as the key is repeated). Use this message to
determine a key’s state (up or down); use MSG_KEY_
PRESS to determine the character typed (e.g., for a text edi-
tor). To be eligible to process this message, an object must
register for it using the RegisterKey() API function (see
section 4.2.3).

Handler Format:

(if handled by a container object/global)

func <name> (<keycode> as unibyte, <pass> ->
as boolean)

handles MSG_KEY_DOWN
[...]

endfunc

(if handled by an area/non-drawable object)

func <name> (<keycode> as unibyte)
handles MSG_KEY_DOWN
[...]

endfunc

Parameters:

<keycode>
A unibyte containing the keycode for the key that was
pressed. Most keycodes are defined as constants, which are
listed in Appendix A.

<pass>
False if the container's children have not yet received the
message, and true if the container's children have already
received the message.

Message:

MSG_KEY_PRESS

Description:

This message indicates that a key has been pressed on the
keyboard or keypad. The keyboard and keypad are distin-
guished by unique keycodes. If the key repeat feature is
available on the keyboard or keypad and the key is held
down, then the MSG_KEY_PRESS will occur for the initial
key (immediately after the MSG_KEY_DOWN message is
sent) and for each key repeat event. To be eligible to process

this message, an object must register for it using the Regis-
terKey() API function (see section 4.2.3).

Handler Format:

(if handled by a container object/global)

func <name> (<keycode> as unibyte, <pass> ->
as boolean)

handles MSG_KEY_PRESS
[...]

endfunc

(if handled by an area/non-drawable object)

func <name> (<keycode> as unibyte)
handles MSG_KEY_PRESS
[...]

endfunc

Parameters:

<keycode>
A unibyte containing the keycode for the key that was
pressed. Most keycodes are defined as constants, which are
listed in Appendix A.

<pass>
False if the container's children have not yet received the
message, and true if the container's children have already
received the message.

Message:

MSG_KEY_RELEASE

Description:

This message indicates that a key has been released on the
keyboard or keypad. The keyboard and keypad are distin-
guished by unique keycodes. This message is unaffected by
the key repeat feature. To be eligible to process this mes-
sage, an object must register for it using the RegisterKey()
API function (see section 4.2.3).

Handler Format:

(if handled by a container object/global)

func <name> (<keycode> as unibyte, <pass> ->
as boolean)

handles MSG_KEY_RELEASE
[...]

endfunc

(if handled by an area/non-drawable object)

func <name> (<keycode> as unibyte)
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 27
handles MSG_KEY_RELEASE
[...]

endfunc

Parameters:

<keycode>
A unibyte containing the keycode for the key that was
pressed. Most keycodes are defined as constants, which are
listed in Appendix A.

<pass>
False if the container's children have not yet received the
message, and true if the container's children have already
received the message.

3.5 User Messages

Although hardware events are generated by the system soft-
ware, it is often desirable for the application to have the
ability to send messages to indicate software events. Qlarity
allows you to define user messages and a flexible set of
Qlarity API functions to send these messages.

3.5.1 Defining User Messages

Syntax:

constant message <msg_name>

Description:

This statement declares a user message named
“<msg_name>.” The name can be any legal identifier; how-
ever, it is advisable to use a common convention for naming
user messages, such as UMSG_XXXX.

Like other user-defined types, this declaration must appear
in the global code area. Messages cannot be declared inside
object definitions or instances.

3.5.2 Sending User Messages

User messages are sent using the UserBroadcastMsg(),
UserSendMsg(), and UserDirectMsg() API functions. These
functions are described in detail in section 4.12, “User Mes-
sage Functions” in this manual.

Messages sent with UserBroadcastMsg() behave as broad-
cast messages. They go to all objects (enabled or disabled)
in Z-order and cannot be terminated.

Messages sent with UserSendMsg() behave as area mes-
sages. They are passed to eligible (enabled) objects in Z-

order and may be terminated with a handler return value of
“true.” Unlike area messages, these user messages are not
sent to container objects twice. Container handlers are
called before the message is passed to the container's chil-
dren.

A message sent with UserDirectMsg() goes to the object
regardless of the object’s enabled status.

UserBroadcastMsg(), UserSendMsg(), and UserDirect-
Msg() have a boolean parameter that determines whether
the current message processing is suspended while the user
message is handled by the messaging system. Passing a
value of “true” will suspend the current processing until the
user message has been processed. Processing of the sus-
pended message then resumes at the statement following the
API call to send the user message. Passing a value of “false”
in this parameter causes the message to be enqueued as any
other message. Any exceptions occurring during immediate
handling filter up to where the message was initiated.

All user messages carry a single integer parameter that can
be used for any desired purpose. The integer is passed as a
parameter to the particular API function and is received as a
parameter in the handler function.

3.5.3 Handlers for User Messages

Description:

This message indicates that a user message named
“<msg_name>” has been sent.

Handler Format:

func <name> (<intdata> as integer) ->
returns boolean

handles msg_name
[...]

endfunc

Parameters:

<intdata>
An integer that can be used for any desired purpose.

The meaning of the return value depends on how the mes-
sage was sent, as follows:

Broadcast
The return value is ignored.

User
A return value of true = kill message; false = continue.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

28 OptoTerminal Programmer’s Reference Manual
Direct
If immediate processing was specified, the return value
is the return value of the UserDirectMsg() API func-
tion. If not immediate, the return value is ignored.

3.6 Direct Messages

Direct messages are sent by the system to a specific object.
They are similar to a direct user message except that they
are sent by the system rather than the user application. The
messages are enqueued in the message queue as are most
other messages, but they are only passed to a single object
when they are handled. The object must have a handler for
the message.

Message:

MSG_COMM_ACCEPT

Description:

This message is generated as the result of a successful call
to the NetOpen() API function. When the network channel
is opened, the associated communications resource is
passed to the object that called NetOpen() via this message.
The communications resource may then be used to transmit
data using the Send(), Transmit(), and (for TCP channels)
TransmitUrgent() API functions. The resource may also be
used to register for the MSG_COMM_RECEIVE message.

Handler Format:

func <name> (<socket> as comm)
handles MSG_COMM_ACCEPT
[...]

endfunc

Parameters:

<socket>
A value of type “comm” that is associated with the opened
network communications channel. (See section 4.1, “Com-
munications Interface”.)

Message:

MSG_COMM_ERROR

Description:

This message is generated when errors are detected with a
network channel. An error code and an error message are
passed to the object that opened the channel. In general, the
network channel should be closed with a call to NetClose()
in the MSG_COMM_ERROR handler. If necessary, the

comm resource can be obtained with a GetComMessage-
Source() API call.

Handler Format:

func (<errcode> as integer, <errmsg>[] as ->
byte)

handles MSG_COMM_ERROR
[...]

endfunc

Parameters:

<errcode>
An integer indicating what type of error occurred.

<errmsg>
A byte array containing an error message string.

Message:

MSG_ZENABLED

Description:

This message is a direct message sent by the system soft-
ware to notify an object whether or not it is enabled back to
root (this does not include the object’s enabled status). Any
changes in the object’s enabled path to root generate this
message.

Handler Format:

func <name> (<status> as boolean)
handles MSG_ZENABLED
[...]

endfunc

Parameters:

<status>
Indicates whether the path to root is enabled (true = enabled
to root). This does not take into account whether the object
receiving the message is enabled.

Message:

MSG_SOUND_DONE

Description:

This message is issued by the system software when a
sound event (note or sound) is generated by the PlayNo-
teNotify or PlaySoundNotify API functions has been com-
pleted. The object that receives this message is determined
by the <obj> parameter passed to the PlayNoteNotify and
PlaySoundNotify API functions. The <parm> parameter
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 29
allows the application to determine which sound has com-
pleted.

Handler Format:

func <name> (<remaining> as integer, ->
<parm> as integer)

handles MSG_SOUND_DONE
[...]

endfunc

Parameters:

<remaining>
Number of sound events (notes and sounds) that remain to
be played by the system.

<parm>
The identifier that was passed to the PlayNoteNotify or
PlaySoundNotify API functions as the <parm> parameter.

3.7 Tool Messages

Because objects may be completely defined by the user,
Qlarity Foundry has no knowledge about the appearance or
behavior of a given object. Therefore, the object itself must
define its behavior for Qlarity Foundry development activi-
ties such as drag-and-drop, resize by dragging resize grips
on a selected object, and so on. Tool messages are generated
by the Qlarity Foundry system software to tell an object that
these activities are taking place. The object must have mes-
sage handlers for these events to properly function in Qlar-
ity Foundry.

Tool message handlers must be enclosed in “#if _TOOL/
#endif” compiler directives. This only includes the handlers
used during development with Qlarity Foundry.

Since the tool message handlers usually change the proper-
ties of an object, the system software must be informed that
these properties have changed so that it can update its object
data structures. This is the purpose of the Tool_Persist()
API function. Tool_Persist() is a special API function
(available only in Qlarity Foundry) that takes a property
name as its only parameter. If Tool_Persist() is not called
when a property is changed by a message handler, the
change is not properly recorded in the application. There-
fore, Tool_Persist() must be called once for each changed
object property in a tool message handler.

If you use Qlarity Foundry to create the object, you have the
option to create an object that already handles these mes-
sages in a manner appropriate for most types of objects.

Refer to Chapter 10, “Advanced Design,” in the OptoTermi-
nal Qlarity Foundry User’s Manual for sample implementa-
tions of the functions. If you elect to have Qlarity Foundry
generate an object “ready to operate in Qlarity Foundry,”
handlers appropriate for most objects are included.

Message:

MSG_TOOL_ATTACH

Description:

This message is sent by Qlarity Foundry when an object
needs to be attached to a parent container, usually due to
mouse activity in the object hierarchy window. The handler
should call the Attach() API function using “<newparent>”
as the new parent.

Handler Format:

func <name> (<newparent> as objref)
handles MSG_TOOL_ATTACH
Attach (me,<newparent>)
[...]

endfunc

Parameters:

<newparent>
A reference to the container to which the object should
attach itself.

Do not assign the “parent” property to “newparent” (i.e., do
not do “parent := newparent”). This will be done in the
MSG_TOOL_ATTACHED handler.

This handler code will suffice for almost any conceivable
object, because Qlarity Foundry first calls “attach,” but the
object doesn’t have to attach.

Message:

MSG_TOOL_ATTACHED

Description:

When API functions that change Z-order [such as Attach()]
are called, the requested change is scheduled. Because Z-
order is critical to the proper functioning of the message
handling system, the actual changes are postponed until the
current message has been processed to completion. There-
fore, it is not possible to know if an Attach() succeeded until
the handler that called Attach() has finished executing. If
the attach fails, properties that indicate an object's parent
should not be changed. If the attach succeeds, then the prop-
erty needs to be updated.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

30 OptoTerminal Programmer’s Reference Manual
The MSG_TOOL_ATTACHED message is sent when a
successful attachment has occurred. The handler is respon-
sible for updating any property that is affected by a change
in parent.

Handler Format:

func <name> (<newparent> as objref)
handles MSG_TOOL_ATTACHED
parent := newparent
tool_persist(parent)
[...]

endfunc

Parameters:

<newparent>
A reference to the container to which the object should
attach itself.

This handler code works for any object with an objref prop-
erty named “parent” that holds a reference to the object's
parent. Note that the strict assignment operator is used (to
avoid calling a validation function that will likely call the
Attach() API) and that the Tool_Persist() API function is
called to inform the system software that the value of the
parent property has changed.

Message:

MSG_TOOL_MOVE

Description:

This message indicates that the object has been moved in
Qlarity Foundry (probably due to a mouse drag). The han-
dler should update any properties relating to object position,
call API functions to update the system software position
attributes for the object, and call Tool_Persist() for any
properties that have changed.

Handler Format:

func <name> (<dx> as integer, <dy> as ->
integer)

handles MSG_TOOL_MOVE
xpos = xpos + dx
ypos = ypos + dy
tool_persist(xpos)
tool_persist(ypos)
[...]

endfunc

Parameters:

<dx>
The change in the object x-position caused by the move.

<dy>
The change in the object y-position caused by the move.

This code assumes that the object has properties “xpos” and
“ypos,” which hold the current position of the object. Nor-
mally, the validation functions for these properties will han-
dle updating the system software attributes, so “xpos” and
“ypos” should be assigned using the validation assignment
operator. The Tool_Persist() function is called once for each
property that was changed.

Message:

MSG_TOOL_GETHANDLES

Description:

This message indicates that the object has been selected in
Qlarity Foundry, causing sizing handles (resize grips) to
appear on the outline of the object. The object designer has
significant freedom to specify the number and location of
the resize grips and the cursor that appears as the mouse
cursor is positioned over the grip. The handler is passed ref-
erences to three arrays that must be filled with the x-posi-
tion, y-position, and desired cursor, respectively, for each
grip. The handler should size the arrays to the number of
grips that will be displayed on the object.

Handler Format:

func <name> (<xCoords>[] as reference to ->
integer, <yCoords>[] as reference to ->
integer, <cursors>[] as reference to ->
GuiCursors, <closed> as reference to ->
boolean)

handles MSG_TOOL_GETHANDLES
[...]

endfunc

Parameters:

<xcoords>[]
An array that defines the x-position of each grip.

<ycoords>[]
An array that defines the y-position of each grip.

<cursor>[]
An array that defines the cursor type for each grip.

<closed>
A boolean value that determines whether a selection outline
segment should be drawn between the last grip and the first
grip (outline segments are always drawn between all other
grips). A value of “true” causes the outline segment to be
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 31
drawn. This also indicates whether clicking inside the
object will select it.

GuiCursors is a standard defined type with the following
possible values:

CSR_NOLINETO and CSR_OBJFIXED are flags that
should be combined with another flag using the “or” opera-
tor (e.g., cursor[2] = CSR_ALL or CSR_NOLINETO)

The typical handler for this function has three local arrays
(one integer array for x, one integer array for y, and one
array of GuiCursors for cursors) with the dimension size
indicating the number of resize grips. The array elements
should be assigned to the desired values. The arrays are then
assigned to xCoords, yCoords, and cursors, respectively.
Since the parameters are references to arrays, the values
assigned in the handler are passed back to the system, which
uses the data to create the resize grips for the object.

NOTE:
The initial size for the parameters is 0 (zero) elements.

Message:

MSG_TOOL_MOVEHANDLE

Description:

This message indicates that one of the object's resize grips
has been dragged in Qlarity Foundry. The typical response
to this activity is to resize the object, although certain han-
dles may be associated with other object properties. The
handler should set object properties relating to size (or
whatever property is associated with the dragged grip), call
API functions to alter attributes in the system software (usu-
ally done in property validation functions), and call
Tool_Persist() for any property that has been modified.

Handler Format:

func <name> (<handle> as reference to ->
integer, <dx> as integer, <dy> as integer)

handles MSG_TOOL_MOVEHANDLE
[...]

endfunc

GuiCursors Description

CSR_UPDOWN
Cursor has arrows pointing up
and down. The resize grip can
only be dragged vertically.

CSR_LEFTRIGHT
Cursor has arrows pointing left
and right. The resize grip can only
be dragged horizontally.

CSR_UPLEFT

Cursor has arrows pointing diago-
nally up and left and down and
right. The resize grip can be
dragged in any direction.

CSR_UPRIGHT

Cursor has arrows pointing diago-
nally up and right and down and
left. The resize grip can be
dragged in any direction.

CSR_DOWNLEFT

Cursor has arrows pointing diago-
nally down and left and up and
right. The resize grip can be
dragged in any direction.

CSR_DOWNRIGHT

Cursor has arrows pointing diago-
nally down and right and up and
left. The resize grip can be
dragged in any direction.

CSR_ALL
Cursor has four arrows pointing
in all directions. The resize grip
can be dragged in any direction.

CSR_BLOCK
Cursor appears as a block. The
resize grip may not be dragged.

CSR_NONE

Cursor does not indicate the pres-
ence of a resize grip, and the
resize grip is not drawn. The loca-
tion cannot be dragged.

CSR_SELECT

Cursor has a different color resize
grip for selection. Resize grip
cannot be dragged. (Usually com-
bined with CSR_NOLINETO.)

CSR_NOLINETO Cannot draw a line between.

CSR_OBJFIXED
Use on first resize grip to indicate
that the object cannot be moved
by the mouse (in a fixed location).

CSR_DELETE
Cursor has a different color resize
grip for selection. Resize grip
cannot be dragged.

CSR_PLUS
Cursor has a different color resize
grip for selection. Resize grip
cannot be dragged.

GuiCursors Description
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

32 OptoTerminal Programmer’s Reference Manual
Parameters:

<handle>
An index of the handle defined in the arrays in the
MSG_TOOL_GETHANDLES handler. If the handle type is
CSR_SELECT, “<dx>” and “<dy>” are zero. If the handle
number changes due to dragging, change the value of the
handle to the appropriate number.

<dx>
The change in the resize grip’s x-position caused by the
drag.

<dy>
The change in the resize grip’s y-position caused by the
drag.

Message:

MSG_TOOL_DRAGCREATE

Description:

This message indicates that an object is being created by a
click-and-drag operation in the Qlarity Foundry workspace.
The format for the handler differs depending on the type of
object being created. Non-drawable objects receive infor-
mation about the parents to which they should attach. Area
and container objects receive information about their posi-
tion, size, and parents. The handler should set the object’s
initial properties, call API functions to set the object
attributes in the system software (usually done in property
validation functions), and finally call Tool_Persist() for any
property that has been modified.

Handler Format:

(if handled by an area or container object)

func <name> (<parent> as objref, <x1> as ->
integer, <y1> as integer, <x2> as integer, ->
<y2> as integer)

handles MSG_TOOL_DRAGCREATE
[...]

endfunc

(if handled by a non-drawable object)

func <name> (<parent> as objref)
handles MSG_TOOL_DRAGCREATE
[...]

endfunc

Parameters:

<parent>
A reference to the parent to which the new object should
attach itself.

<x1>
The x-position of the location where the drag was initiated.

<y1>
The y-position of the location where the drag was initiated.

<x2>
The x-position of the location where the drag was com-
pleted

<y2>
The y-position of the location where the drag was com-
pleted.

The coordinates (x1,y1) and (x2,y2) are not normalized,
which means that (x2,y2) might be above and to the left of
(x1,y1). The handler should normalize these coordinates, if
necessary, before calculating the initial position and size of
the object.

A typical handler for a rectangular object will normalize
(x1,y1) and (x2,y2) if necessary, set the values for local
properties that indicate position, size, and parent, call
Tool_Persist() for all modified properties, and then call the
object's MSG_INIT handler to handle the object initializa-
tion.

For more information on these messages and their handlers,
refer to Chapter 10 in the OptoTerminal Qlarity Foundry
User’s Manual.

Message:

MSG_TOOL_DELETEOBJ

Description:

This message is sent to an object in the GUI development
environment just before the object is deleted. This allows
the object to notify other objects that it is being removed
from the workspace so other objects can respond appropri-
ately.

Handler Format:

func <name> ()
handles MSG_TOOL_DELETEOBJ
[...]

endfunc
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 33
3.8 Special Messages

This section describes messages that are unique or that do
not fit into another message category.

Message:

MSG_ERROR

Description:

This message is issued by the system software if an excep-
tion remains unhandled after all possible enclosing “check
error/on error” blocks have been checked. It indicates to the
handler that at least one unhandled exception resides in the
system exception stack. The MSG_ERROR message can
only be handled by a global message handler. Since the han-
dler takes no parameters, the exception information must be
retrieved by calling the GetException() API function.

Refer to the OptoTerminal Qlarity Foundry User’s Manual
for more information on the exception handling system.

Handler Format:

func <name> ()
handles MSG_ERROR
[...]

endfunc

Parameters:

MSG_ERROR handlers take no parameters and do not have
a return value.

Message:

MSG_DRAW_DONE

Description:

This message is sent by the system after a draw message has
completed. The parameters indicate the bounding rectangle
which was redrawn. This message, like MSG_ERROR, is
only sent to a global message handler.

Handler format:

func DrawDone(<left> as integer, <top> ->
as integer, <width> as integer, <height> ->
as integer)

handles MSG_DRAW_DONE
return
[...]

endfunc

Parameters:

<left>
The x-location of the upper left corner pixel of the invalid
region.

<top>
y-location of the upper left corner pixel of the invalid
region.

<width>
Width of the invalid region in pixels.

<height>
Height of the invalid region in pixels.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

34 OptoTerminal Programmer’s Reference Manual
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

CHAPTER 4

QLARITY API FUNCTION REFERENCE

The Qlarity API (Application Programming Interface) is a
library of functions that allow Qlarity applications to inter-
act with the Qlarity-based hardware and perform common
tasks that would be tedious or difficult to program in Qlar-
ity. This chapter describes the available API functions, their
parameters and return values, and the operations they per-
form.

4.1 Communications Interface

The communications API functions use an enumerated type
called “comm” to specify the communications resource or
interface. Variables of type “comm” may be assigned the
values “COM1” (for the primary serial interface), “COM2”
(for the secondary serial interface) or a value may be
obtained from a call to NetOpen(), which assigns access to
the Ethernet interface.

4.1.1 Send

Syntax:

send(resource as comm, data[] as anytype)

Parameters:

{resource}
The communications resource to transmit the data.

{data}
A byte array that contains the data for transmission.

Description:

This function generates a MSG_COMM_TRANSMIT mes-
sage. The data in “{data}” is passed to any handlers for the
message. This function is useful when implementing a com-
mon transmission interface (the MSG_COMM_TRANS-
MIT handler) to perform protocolization, gather statistics,
and so on.

4.1.2 Transmit

Syntax:

transmit(resource as comm, data[] as ->
reference? to anytype, block as boolean)

Parameters:

{resource}
The communications resource to transmit the data.

{data}
An array of any type that contains the data for transmission.

{block}
A boolean flag to select buffered or unbuffered transmis-
sion.

Description:

The transmit function sends the data in “{data}” to the com-
munications interface specified by “{resource}.” If the
“{block}” parameter is true, then the unit waits until the
transmission has finished before returning from the API
function. If “{block}” is false, then the system software
buffers the data and returns immediately. Transmission
takes place in the background. Using buffered output is gen-
erally a more efficient use of system resources and is rec-
ommended for most transmissions.

4.1.3 SetBreak

Syntax:

setbreak(resource as comm, state as boolean)

Parameters:

{resource}
The communications resource to change the state of.

{state}
A boolean flag used to indicate whether a break state should
begin. A value of “true” indicates to place the resource in
break, where as “false” indicates that the break condition
should be terminated.

Description:

This function allows the user to set the break state of a com-
munications port.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

36 OptoTerminal Programmer’s Reference Manual
4.1.4 GetComMessageSource

Syntax:

getcommessagesource()returns comm

Description:

This function returns the “comm” identifier for the current
communications message.

4.1.5 NetOpen

Syntax:

netopen(obj as objref, prot as ->
netprotocol, localport as unibyte, ->
foreignport as unibyte, ipaddr[] as ->
reference? to byte)

Parameters:

{obj}
A reference to the object that will receive the
MSG_COMM_ACCEPT message (see below).

{prot}
The protocol to be used for the connection (see below).

{localport}
The local port number to be used for TCP or UDP transmis-
sions.

{foreignport}
The port number on the remote machine to be used for TCP
or UDP transmissions.

{ipaddr}
A 4-byte array containing the IP address of the remote
machine.

Description:

The NetOpen() function is used to establish an Ethernet
communications channel. NetProtocol is an enumerated
type with the following legal values:

NET_UDP
Use the User Datagram Protocol (UDP/IP)

NET_TCP
Use the Transmission Control Protocol (TCP/IP)

NetOpen() issues the request to open a communications
channel. When the channel is established, the communica-

tions resource (used to receive and transmit data) is passed
by the system to the object referenced by “{obj}” by the
system in a MSG_COMM_ACCEPT message. This com-
munications resource is passed to the Send() and Transmit()
API functions to indicate which network channel should be
used for transmission. It is also used to register for
MSG_COMM_ RECEIVE messages generated by the net-
work channel.

If “{foreignport}” is set to 0, the Qlarity-based terminal acts
as a server listening for TCP connection requests or UDP
datagrams on the port specified by “{localport}.” Connec-
tions or datagrams with any foreign port number are
accepted on this local port. When a new connection or data-
gram (from a unique foreign port) is accepted, a network
channel is allocated and passed to the application in a
MSG_COMM_ ACCEPT message. If no TCP connection is
established or UDP datagram received, the application con-
tinues to listen on the specified local port until the terminal
is reset.

NOTE:
This is a deprecated method for starting network servers.
Use the NetServerOpen() API function instead.

Up to 64 channels (32 TCP channels) may be open at any
given time. Channels may be released by calling Net-
Close().

Multicast Information Only:

If you are opening a multicast channel (any class D IP
address), the following information applies

Calling NetOpen and specifying any class D IP address for
the “{ipaddr}” parameter will open a multicast channel.

You must specify NET_UDP as the protocol. TCP/IP does
not support multicast communication.

The “{foreignport}” parameter is only used to specify
which port outgoing transmissions will be directed to.
Incoming transmission's foreign port are not compared
against this parameter. In other word, it doesn't matter what
local port a device uses when transmitting to the multicast
group.

The “{localport}” parameter is normally used to filter
incoming data. Generally, you will only receive data pack-
ets that are directed at the multicast group specified by
“{ipaddr}” and directed to the port specified by
“{localport}”. If you specify zero (0) for the local port, then
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 37
ALL transmissions directed to the multicast group are
received. You cannot transmit on a comm channel that was
opened with a local port of zero.

Incoming data on a multicast channel will be received via
MSG_COMM_RECEIVE_MULTICAST messages. You
should call RegisterMsgHandler as normal in a
MSG_COMM_ACCEPT message to register for the
MSG_COMM_RECEIVE_MULTICAST message.

4.1.6 NetServerOpen

Syntax:

netserveropen(obj as objref, prot as ->
netprotocol, localport as unibyte) ->
returns servercomm

Parameters:

{obj}
A reference to the object that will receive
MSG_COMM_ACCEPT messages for this server (see
below).

{prot}
The protocol to be used for the connection (see below).

{localport}
The local port number where the server will listen for data-
grams (UDP) or connection requests (TCP).

Description:

The NetServerOpen() function is used to start an Ethernet
communications server listening on the port specified by
localport. NetProtocol is an enumerated type with the fol-
lowing legal values:

NET_UDP
Use the User Datagram Protocol (UDP/IP)

NET_TCP
Use the Transmission Control Protocol (TCP/IP)

NetServerOpen() starts the server and returns a server com-
munications resource of type “servercomm.” Connections
or datagrams with any foreign port number are accepted on
the local server port. When a new connection or datagram
(from a unique foreign port) is accepted, a network commu-
nications resource is allocated and passed to the object ref-
erenced by “{obj}” in a MSG_COMM_ ACCEPT message.

This communications resource is used with the Send() and
Transmit() API functions to indicate which network channel
should be used for transmission. It is also used to register
for MSG_COMM_RECEIVE messages generated by the
network channel.

Connections or datagrams with any foreign port number are
accepted on this local port. When a new connection or data-
gram (from a unique foreign port) is accepted, a network
channel is allocated and passed to the application in a
MSG_COMM_ ACCEPT message. The application contin-
ues to listen on the specified local port until the terminal is
reset.

Up to 64 channels (32 TCP channels) may be open at any
given time. Channels may be released by calling Net-
Close(). The server will continue to listen on the specified
local port until it is closed by calling the NetServerClose()
API function.

4.1.7 NetClose

Syntax:

netclose(channel as comm)

Parameters:

{channel}
The communications channel to be closed.

Description:

This function closes the channel associated with the speci-
fied comm resource, which must have been obtained from a
previous call to NetOpen().

4.1.8 NetServerClose

Syntax:

netserverclose(channel as servercomm)

Parameters:

{channel}
The communications channel to be closed.

Description:

This function closes the channel associated with the speci-
fied servercomm resource, which must have been obtained
from a previous call to NetServerOpen().
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

38 OptoTerminal Programmer’s Reference Manual
4.1.9 ChangePort

Syntax:

changeport(channel as comm, {newport} as ->
unibyte)

Parameters:

{channel}
The communications resource to modify.

{newport}
The new local port number for the communications
resource.

Description:

This function modifies a UDP communications resource
that was previously obtained from a call to NetOpen(). The
local port number for the communications resource is
changed to “{newport}.” ChangePort() can only be called
for UDP resources; other resource types are not affected by
this function.

4.1.10 TransmitUrgent

Syntax:

transmiturgent(channel as comm, data[] as ->
reference? to anytype)

Parameters:

{channel}
The TCP communications resource to transmit the data.

{data}
An array of any type that contains the data for urgent trans-
mission via TCP.

Description:

This function sends the data in “{data}” via TCP urgent
data mode to the TCP communications interface specified
by “{channel}.” Transmission takes place in the back-
ground.

4.1.11 GetNetChannelInfo

Syntax:

getnetchannelinfo(channel as comm, prot ->
as reference to netprotocol, lport as ->
reference to unibyte, fport as reference ->
to unibyte, ipaddr[] as reference to byte)

Parameters:

{channel}
The communications resource whose information will be
returned.

{prot}
A reference to type “NetProtocol” that will receive “{chan-
nel}’s” protocol.

{lport}
A unibyte variable that will receive “{channel}’s” local port
number.

{fport}
A unibyte variable that will receive “{channel}’s” foreign
port number.

{ipaddr}
A byte array that will receive “{channel}’s” foreign IP
address.

Description:

This function retrieves information about the “{channel}”
communications resource. The protocol, local port number,
foreign port number, and foreign IP address are stored in the
reference parameters.

4.1.12 SetSerialRecvSize

Syntax:

setserialrecvsize(res as comm, newsize as ->
integer)

Parameters:

{res}
A serial communications resource (COM1 or COM2).

{newsize}
The desired size for the receive buffer.

Description:

This function sets the size of the receive buffer for serial
communications on the specified interface. The receive
buffer is the maximum number of characters that can be
received with a single MSG_COMM_RECEIVE message.
A MSG_COMM_RECEIVE message is generated when-
ever (1) the receive buffer is full, or (2) the receive buffer is
not empty and no characters have been received for the tim-
eout period (see SetSerialTimeout()).
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 39
4.1.13 SetSerialTimeout

Syntax:

setserialtimeout(res as comm, newtimeout ->
as integer)

Parameters:

{res}
A serial communications resource (COM1 or COM2).

{newtimeout}
The desired number of 20 ms intervals that should elapse
before a timeout occurs (1 = 20ms).

Description:

This function sets the timeout period for serial communica-
tions on the specified interface. The timeout period is the
maximum period of time between received characters
before a MSG_COMM_RECEIVE message is generated. A
MSG_COMM_RECEIVE message is generated whenever
(1) the receive buffer is full (see SetSerialRecvSize()), or
(2) the receive buffer is not empty and no characters have
been received for the timeout period. Setting the timeout
period to 0 disables timeout, meaning that MSG_COMM_
RECEIVE messages are only generated when the receive
buffer is full.

4.1.14 SetCTS

Syntax:

setcts(resource as comm, outValue as ->
boolean)

Parameters:

{resource}
The communications resource in which to change the CTS
line.

{outValue}
The value to be placed on the CTS line.

Description:

This function is used to set the CTS line on a serial port of
the Qlarity-based terminal if the line is available for use.
(RTS/CTS flow control is only supported for the EIA-232
interface.)

4.1.15 ReadRTS

Syntax:

readrts(resource as comm) returns boolean

Parameters:

{resource}
The communications resource from which to read.

Description:

This function is used to read the RTS line on a serial port of
the Qlarity-based terminal if the line is available for use.
(RTS/CTS flow control is only supported for the EIA-232
interface.)

4.1.16 SetDSR

Syntax:

setdsr(resource as comm, outValue as ->
boolean)

Parameters:

{resource}
The communications resource to change the DSR line of.

{outValue}
The value to be placed on the DSR line.

Description:

This function is used to set the DSR line on a serial port of
the Qlarity-based terminal, if that line is available for use.

NOTE:
The DSR line is not available on the Qlarity-based terminal
primary or auxiliary serial ports. It may be available on
expansion serial ports.

4.1.17 ReadDTR

Syntax:

readdtr(resource as comm) returns boolean

Parameters:

{resource}
The communications resource from which to read.

Description:

This function is used to read the DTR line on a serial port of
the Qlarity-based terminal, if that line is available for use.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

40 OptoTerminal Programmer’s Reference Manual
NOTE:
The DTR line is not available on the Qlarity-based terminal
primary or auxiliary serial ports. It may be available on
expansion serial ports.

4.1.18 Read DCD

Syntax:

readdcd(resource as comm) returns boolean

Parameters:

{resource}
The communications resource from which to read.

Description:

This function is used to read the DCD (carrier detect) line
on a serial port of the Qlarity-based terminal, if that line is
available for use.

4.1.19 NetSendDatagram

Syntax:

netsenddatagram(localport as unibyte, ->
foreignport as unibyte, ipaddr[] as ->
reference? to byte, data[] as reference? ->
to byte)

Parameters:

{localport}
The local port number to be used for the UDP datagram.

{foreignport}
The port number on the remote machine to be used for the
UDP datagram.

{ipaddr}
A 4-byte array containing the IP address of the remote
machine.

{data}
An array of bytes that contains the data for transmission in
the datagram.

Description:

The NetSendDatagram() function is used to send a single
datagram on the network using the User Datagram Protocol
(UDP/IP). This function allows a datagram to be transmit-
ted without opening a network channel (i.e. with the
NetOpen API function). Both "{foreignport}" and
"{localport}" must be set to non-zero values. This function

is for transmission only. No response to the datagram will
be received unless the appropriate channel has been estab-
lished.

4.2 Registering for Messages

4.2.1 RegisterMsgHandler

Syntax:

registermsghandler(obj as objref, msgnum ->
as message, msgparm as unibyte)

Parameters:

{obj}
The object registering for the message.

{msgnum}
The name of the message (e.g., MSG_TIMETICK).

{msgparm}
A parameter whose meaning depends on the message (see
section 3.4).

Description:

This function registers an object to receive registered mes-
sages. After this call, the object passed in “{obj}” is eligible
to receive “{msgnum}” messages if it has an enabled path
to root.

4.2.2 UnregisterMsgHandler

Syntax:

unregistermsghandler(obj as objref, ->
msgnum as message, msgparm as unibyte)

Parameters:

{obj}
The object registering for the message.

{msgnum}
The name of the message (e.g. MSG_-TIMETICK).

{msgparm}
A parameter whose meaning depends on the message (see
section 3.4).

Description:

This function unregisters the “{obj}” object so that it will
no longer receive “{msgnum}” messages.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 41
4.2.3 RegisterKey

Syntax:

registerkey(obj as objref, keycode as ->
unibyte)

Parameters:

{obj}
The object registering for the message.

{keycode}
The keycode that causes a message to be generated for the
object.

Description:

This function registers an object to receive
MSG_KEY_DOWN, MSG_KEY_PRESS, and MSG_KEY
_RELEASE messages when the keyboard or keypad key
associated with “{keycode}” is activated. A list of valid
keycodes is included in Appendix A.

In addition, there are two special keycodes not directly
associated with specific keys. The KEY_ANY keycode reg-
isters the object to receive key messages for all keys. The
KEY_NONE keycode effectively unregisters the object for
key messages.

A given object may only be registered for one keycode
value. Each call to RegisterKey() preempts any keycode that
was previously registered for the “{obj}” object.

4.3 Manipulating Objects

4.3.1 GetObjref

Syntax:

getobjref(name}[] as reference? to byte) ->
returns objref

Parameters:

{name}
A string (byte array) that contains the name of the desired
object.

Description:

This function takes the name of an object and returns an
objref to the object.

4.3.2 GetObjProp

Syntax:

getobjprop(obj as objref, name[] as ->
reference? to byte) returns string

Parameters:

{obj}
A reference to the object with the desired property.

{name}
A string containing the name of the property to retrieve.

Description:

This function returns the value for the desired property con-
verted to a string. The returned value is converted to a string
(identical to calling the API function Str() on the property).

4.3.3 SetObjProp

Syntax:

setobjprop(obj as objref, name[] as ->
reference? to byte, {value}[] as ->
reference? to byte)

Parameters

{obj}
A reference to the object with the desired property.

{name}
A string containing the name of the property to set.

{value}
The new value for the property converted to a string.

Description:

This functions converts the string in “{value}” to the correct
data type for the specified property then assigns that value
to the property (refer to the “Val” function for conversion
rules; see section 4.10.2).

4.3.4 Enable

Syntax:

enable(obj as objref, flag as boolean)

Parameters:

{obj}
A reference to the object to be enabled/disabled.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

42 OptoTerminal Programmer’s Reference Manual
{flag}
A boolean flag containing the desired status. A value of
“true” enables the object, and a value of “false” disables it.

Description:

This function enables or disables an object according to the
“{flag}” parameter. An object must be enabled to receive
messages and appear on the display.

4.3.5 GetContainer

Syntax:

getcontainer(obj as objref) returns objref

Parameters:

{obj}
A reference to a child object.

Description:

This function returns a reference to the parent container of
the “{obj}” object.

4.3.6 GetChildren

Syntax:

getchildren(contobj as objref) returns ->
objref[]

Parameters:

{contobj}
A reference to a container type object.

Description:

This function returns an array containing references to all of
the object’s direct children (all objects whose parent is
“{contobj}”). The children are returned in Z-order.

4.3.7 GetEnableInfo

Syntax:

getenableinfo(obj as objref, eval as ->
enable_info) returns boolean

Parameters:

{obj}
The object for which the status information is to be
returned.

{eval}
The type of information desired.

Description:

This function returns the status of the object “{obj}” based
on the information desired (indicated by “{eval}”). Legal
values for “{eval}” are:

GET_ENABLED
Request the enabled status of an object.

GET_ZENABLED
Request whether the object’s parents are enabled to
root (does not include the object itself).

4.3.8 GetPosInfo

Syntax:

getposinfo(obj as objref, pval as ->
position_info) returns integer

Parameters:

{obj}
The object for which the position information is to be
returned.

{pval}
The type of information desired.

Description:

This function returns the requested position information for
“{obj}” based on the information desired (indicated by
“{pval}”). Legal values for “{pval}” are:

GET_X
The current x-position of the object (relative to its par-
ent).

GET_Y
The current y-position of the object (relative to its par-
ent).

GET_WIDTH
The current width of the object.

GET_HEIGHT
The current height of the object.

GET_ORIGIN_X
The current origin x value (for a container only).
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 43
GET_ORIGIN_Y
The current origin y value (for a container only).

GET_XGLOBAL
The current x-position of the object (top, left of dis-
play: 0,0).

GET_YGLOBAL
The current y-position of the object (top, left of dis-
play: 0,0)

4.3.9 SetOrigin

Syntax:

setorigin(cont as objref, originX as ->
integer, originY as integer)

Parameters:

{cont}
The container for which to set the origin.

{originX}
The x coordinate of the top left pixel in the container, rela-
tive to the parent container.

{originY}
The y coordinate of the top left pixel in the container, rela-
tive to the parent container.

Description:

This function sets the origin of the container so that the
upper left pixel of the container has the coordinates “{orig-
inX},{originY}” (with a default value of 0,0). The “{orig-
inX}” and “{originY}” coordinates are relative to the
container itself. This causes all objects drawn on the con-
tainer to be shifted appropriately. This does not change the
manner in which the container’s background is drawn.

4.4 Manipulating Z-Order

These functions change the Z-order of objects in the object
hierarchy. Because the message handling system is highly
dependent on Z-order, all changes to Z-order requested by
these functions are postponed until processing of the current
message is complete. Z-order changes are then executed in
the order in which they were requested.

4.4.1 Attach

Syntax:

attach(obj as objref, parent as objref)

Parameters:

{obj}
A reference to the object that will be attached.

{parent}
A reference to the new parent object.

Description:

This function attaches an object to a container. The object
being attached is placed in front of any other objects already
attached to the parent. If the object is already attached to the
parent, it will be moved to the top of the Z-order.

4.4.2 SendtoFront

Syntax:

sendtofront(obj as objref)

Parameters:

{obj}
A reference to the object to be moved in Z-order.

Description:

This function moves the object to the front of the list of chil-
dren of the object's parent. If the object is the only child of
its parent, or is already at the front, this has no effect.

4.4.3 SendtoBack

Syntax:

sendtoback(obj as objref)

Parameters:

{obj}
A reference to the object to be moved in Z-order.

Description:

This function moves the object to the back of the list of chil-
dren for the object's parent. If the object is the only child of
its parent, or is already at the back, this function has no
effect.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

44 OptoTerminal Programmer’s Reference Manual
4.4.4 Raise

Syntax:

raise(obj as objref)

Parameters:

{obj}
A reference to the object to be moved in Z-order.

Description:

This function moves the object in front of the sibling object
directly in front of it. If the object is the only child of its par-
ent, or is already at the front, this function has no effect.

4.4.5 Lower

Syntax:

lower(obj as objref)

Parameters:

{obj}
A reference to the object to be moved in Z-order.

Description:

This function moves the object behind the sibling object
directly behind it. If the object is the only child of its parent,
or is already at the back, this function has no effect.

4.5 Redrawing Portions of the Display

4.5.1 Rerender

Syntax:

rerender(obj as objref)

Parameters:

{obj}
A reference to the object to be redrawn.

Description:

This function invalidates the display region for the area of
the specified object causing a MSG_DRAW message to be
generated.

4.5.2 Resize

Syntax:

resize(obj as objref, width as integer, ->
height as integer)

Parameters:

{obj}
A reference to the object to resize.

{width}
The new width of the object.

{height}
The new height of the object.

Description:

This function resizes an object to the specified height and
width by altering the system software object attributes for
the specified object. The display regions for both the old
and new area of the object are invalidated, and a
MSG_DRAW message is generated. If you specify -1 for
either parameter, the dimension for that parameter remains
unchanged.

4.5.3 Relocate

Syntax:

relocate(obj as objref, x as integer, y ->
as integer)

Parameters:

{obj}
A reference to the object to be relocated.

{x}
The new x-position (horizontal coordinate) in pixels for the
object (relative to the calling object's parent).

{y}
The new y-position (vertical coordinate) in pixels for the
object (relative to the calling object's parent).

Description:

This function relocates an object to the specified position by
altering the system software object attributes for the speci-
fied object. The display regions for both the old and new
positions of the object are invalidated, and a MSG_DRAW
message is generated.

4.6 Painting to the Display

Functions that draw on the display must be placed inside a
MSG_DRAW message handler. Attempting to call these
functions outside a MSG_DRAW message handler will
cause a runtime exception to occur.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 45
Many of these functions take a parameter of type “color,”
which is an enumerated type representing the many colors
that are available on the color display. See Appendix A for a
complete list of available colors. Color values may also be
obtained at runtime using the RGB() function (see
section 4.6.5).

For grayscale displays, the luminances of the selected col-
ors are automatically converted to grayscale. This allows an
application to run on either the color or grayscale display
with little modification. (Since the grayscale conversion
compresses multiple colors into each grayscale value, the
transparency settings may cause some differences in how
the application is displayed.)

The default foreground color is RGB_WHITE, and the
default background color is RGB_BLACK.

4.6.1 SetTransparent

Syntax:

settransparent(newcolor as byte)

Parameters:

{newcolor}
A byte specifying the transparent color.

Description:

This function sets the transparent color to “{newcolor}” for
the current message handler. This color setting persists until
the message handler returns. The transparent color is not
drawn on the display, allowing objects behind any transpar-
ent regions to remain visible.

4.6.2 UseTransparent

Syntax:

usetransparent(flag as boolean)

Parameters:

{flag}
A boolean value specifying whether transparency is enabled
(true) or disabled (false).

Description:

This function enables or disables transparency for the dura-
tion of the current message handler or until it is called
again. As transparency is disabled by default, this function
must be called at least once in each message handler that
uses the transparency feature.

4.6.3 SetFgColor

Syntax:

setfgcolor(newcolor as byte)

Parameters:

{newcolor}
A byte specifying the foreground color.

Description:

This function sets the foreground color to “{newcolor}” for
the current message handler or until this function is called
again. The last color setting persists until the message han-
dler returns. The foreground color is used by various draw-
ing API functions.

4.6.4 SetBgColor

Syntax:

setbgcolor(newcolor as byte)

Parameters:

{newcolor}
A byte specifying the background color.

Description:

This function sets the background color to “{newcolor}” for
the current message handler or until this function is called
again. The last color setting persists until the message han-
dler returns. The background color is used by various draw-
ing API functions.

4.6.5 RGB

Syntax:

rgb(red as byte, green as byte, blue as ->
byte)returns color

Parameters:

{red}
An 8-bit integer indicating the amount of red in the desired
color. 255 is maximum, 0 is minimum.

{green}
An 8-bit integer indicating the amount of green in the
desired color. 255 is maximum, 0 is minimum.

{blue}
An 8-bit integer indicating the amount of blue in the desired
color. 255 is maximum, 0 is minimum.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

46 OptoTerminal Programmer’s Reference Manual
Description:

This function is used to obtain a color value at runtime from
user-specified red, green, and blue values. The returned
color value may be used anywhere a color value is required
[e.g., SetFgColor()].

4.6.6 SetPixel

Syntax:

setpixel(x as integer, y as integer)

Parameters:

{x}
The x-position of the pixel to draw (relative to the calling
object's parent).

{y}
The y-position of the pixel to draw (relative to the calling
object's parent).

Description:

This function draws the pixel at the specified location using
the foreground color.

4.6.7 DrawLine

Syntax:

drawline(x1 as integer, y1 as integer, x2 ->
as integer, y2 as integer)

Parameters:

{x1}
The x-position of the first endpoint of the line (relative to
the calling object's parent).

{y1}
The y-position of the first endpoint of the line (relative to
the calling object's parent).

{x2}
The x-position of the second endpoint of the line (relative to
the calling object's parent).

{y2}
The y-position of the second endpoint of the line (relative to
the calling object's parent).

Description:

This function draws a line, using the foreground color,
between the two points defined by (x1, y1) and (x2, y2).

4.6.8 DrawBitmap

Syntax:

drawbitmap(x as integer, y as integer, ->
bmp as bitmap)

Parameters:

{x}
The desired x-position of the upper-left corner of the bitmap
(relative to the calling object's parent).

{y}
The desired y-position of the upper-left corner of the bitmap
(relative to the calling object's parent).

{bmp}
The bitmap resource to draw.

Description:

This function displays a bitmap at the coordinate given. The
origin of the x and y values is at the top left corner of the
parent container.

4.6.9 DrawBitmapRegion

Syntax:

drawbitmapregion(x as integer, y as ->
integer, xoffset as integer, yoffset as ->
integer, width as integer, height as ->
integer, bmp as bitmap)

Parameters:

{x}
The desired x-position of the upper-left corner of the bitmap
(relative to the calling object's parent).

{y}
The desired y-position of the upper-left corner of the bitmap
(relative to the calling object's parent).

{xoffset}
The x-position of the pixel in the bitmap to draw at
“{x},{y}.”

{yoffset}
The y-position of the pixel in the bitmap to draw at
“{x},{y}.”

{width}
Number of pixels per row to copy from the bitmap.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 47
{height}
Number of pixels per column to copy from the bitmap.

{bmp}
The bitmap resource to draw.

Description:

This function prints a portion of a bitmap at the coordinate
specified by “{x},{y}.” The displayed portion of the bitmap
is specified by “{xoffset},” “{yoffset},” “{width},” and
“{height}.” The location of the “{x}” and “{y}” values is
relative to the top left corner of the parent container.

4.6.10 GetObjPixmap

Syntax:

getobjpixmap(width as reference to ->
integer, height as reference to integer)->
returns color[]

Parameters:

{width}
Variable in which the width of object “pixmap” is to be
stored.

{height}
Variable in which the height of object “pixmap” is to be
stored.

Description:

This function is used to retrieve the pixel map for an object.
The pixel map indicates the individual colors drawn in each
pixel location for the object (based on the size of the object
given to the Resize() function). The returned array is a color
array of size “{width} ∗ {height},” indicating the colors
drawn at each location in the object up to this point. Thus,
the color drawn at pixel coordinate x,y in the object (with
0,0 being the top left pixel of the object) is the color indi-
cated by the (({y} ∗ {width}) + {x}) element in the returned
array.

4.6.11 DrawPixmap

Syntax:

drawpixmap(x as integer, y as integer, ->
pixmap[] as reference? to byte, mapwidth ->
as integer, mapheight as integer)

Parameters:

{x}
The desired x-position of the upper-left corner of the pixel
map (relative to the calling object's parent).

{y}
The desired y-position of the upper-left corner of the pixel
map (relative to the calling object's parent).

{pixmap}
The pixel map array.

{mapwidth}
The width of the pixel map.

{mapheight}
The height of the pixel map.

Description:

This function draws a pixel map. The “{pixmap}” array
must have a size of “{mapwidth} ∗ {mapheight}.” The
entire pixel map is copied starting with the top left pixel of
the pixel map copied to the location specified by “{x},{y}.”

4.6.12 DrawPixmapRegion

Syntax:

drawpixmapregion(x as integer, y as ->
integer, xoffset as integer, yoffset as ->
integer, width as integer, height as ->
integer, pixmap[] as reference? to byte, ->
mapwidth as integer, mapheight as integer)

Parameters:

{x}
The desired x-position of the upper-left corner of the pixel
map (relative to the calling object's parent).

{y}
The desired y-position of the upper-left corner of the pixel
map (relative to the calling object's parent).

{xoffset}
The x-position of the pixel in the pixel map to draw at
“{x},{y}.”

{yoffset}
The y-position of the pixel in the pixel map to draw at
“{x},{y}.”
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

48 OptoTerminal Programmer’s Reference Manual
{width}
Number of pixels per row to copy from the pixel map.

{height}
Number of pixels per column to copy from the pixel map.

{pixmap}
The pixel map array.

{mapwidth}
The width of the pixel map.

{mapheight}
The height of the pixel map.

Description:

This function draws a section of a pixel map. The “{pix-
map}” variable must have a size of “{mapwidth}
∗{mapheight}.” The coordinate “{xoffset},{yoffset}” indi-
cates which pixel in the pixel map should map to the posi-
tion “{x},{y}.” Starting at that point, a rectangular section
of the pixel map is copied so that the total number of rows
copied is “{height},” and the total number of columns cop-
ied is “{width}.”

4.6.13 GetBitmapSize

Syntax:

getbitmapsize(width as reference to ->
integer, height as reference to integer, ->
bmp as bitmap)

Parameters:

{width}
An integer to receive the width of the bitmap resource.

{height}
An integer to receive the height of the bitmap resource.

{bmp}
The bitmap resource.

Description:

This function determines the size of a bitmap resource.
“{width}” and “{height}” receive values, in pixels, corre-
sponding to the width and height of the “{bmp}” bitmap
resource.

4.6.14 DrawBox

Syntax:

drawbox(left as integer, top as integer, ->
right as integer, bottom as integer)

Parameters:

{left}
The x-position for the left side of the box (relative to the
calling object's parent).

{top}
The y-position for the top of the box (relative to the calling
object's parent).

{right}
The x-position for the right side of the box (relative to the
calling object's parent).

{bottom}
The y-position for the bottom of the box (relative to the call-
ing object's parent).

Description:

This function draws a filled box at the position specified.
The box has a one-pixel border drawn in the foreground
color and is filled with the background color.

4.6.15 DrawPolygon

Syntax:

drawpolygon(xpoints[] as integer, ->
ypoints[] as integer, flags as poly_flags)

Parameters:

{xpoints}
An array of integers containing the x-position for each point
of the polygon (relative to the calling object's parent).

{ypoints}
An array of integers containing the y-position for each point
of the polygon (relative to the calling object's parent).

{flags}
A value of type “poly_flags” (see below) that determines
how the polygon will be drawn.

Description:

This function draws a polygon by connecting line segments
between each of the points defined in the “{xpoints}” and
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 49
“{ypoints}” arrays. The “{flags}” parameter has type
“poly_flags,” which is an enumerated type with the follow-
ing legal values:

POLY_NORMAL
Draw the outline of the polygon in the foreground
color. Do not fill the polygon.

POLY_FILL
Draw the outline of the polygon in the foreground color
and fill it with the background color.

POLY_NOCONNECT
Do not connect the ends of the polygon (it is a line - the
POLY_FILL flag is ignored).

The polygon may have intersecting regions, if desired.

4.6.16 DrawEllipse

Syntax:

drawellipse(xoffset as integer, yoffset ->
as integer, a as float, {xfocal} as ->
float, yfocal as float, theta as float, ->
gamma as float, flags as ellipse_flags)

Parameters:

{xoffset}
The x-position of the center of the ellipse (relative to the
calling object's parent).

{yoffset}
The y-position of the center of the ellipse (relative to the
calling object's parent).

{a}
The distance along the primary focal point vector from the
center to the edge of the ellipse (relative to the calling
object's parent).

{xfocal}
The horizontal distance from the center to the primary focal
point of the ellipse (relative to the calling object's parent).

{yfocal}
The vertical distance from the center to the primary focal
point of the ellipse (relative to the calling object's parent).

{theta}
The angle (in radians) from the primary focal point vector
segment to the starting point of the arc. Positive angles
increase counter-clockwise from the primary focal point
vector segment.

{gamma}
The angle (in radians) from the primary focal point vector
segment to the ending point of the arc. Positive angles
increase counter-clockwise from the primary focal point
vector segment.

{flags}
A value of type “ellipse_flags” (see below) that determines
how the ellipse will be drawn.

Description:

This complex but powerful function draws an open or
closed elliptical arc centered at ({xoffset}, {yoffset}) rela-
tive to the calling object's parent.

The focal points of the ellipse are at the following points:

({xoffset} + {xfocal} and {yoffset} + {yfocal})
({xoffset} – {xfocal} and {yoffset} – {yfocal})

The mathematical definition of an ellipse is that the sum of
the distances from the focal points to any point on the
ellipse is a constant. In this case, the constant is defined as
“2∗{a}.” The elliptical arc is drawn counterclockwise from
“{theta}” to “{gamma}.” The simplest way to draw a closed
ellipse is to draw a circle. Set “{theta}” to “0” and
“{gamma}” to “2∗PI” (PI is a constant defined as 3.14159).

A circle is an ellipse with both focal points at the center. To
draw a circular arc, set “{a}” to the desired radius, and set
“{xfocal}” and “{yfocal}” to “0.” To draw the complete cir-
cle, also set “{theta}” to “0,” and set “{gamma}” to “2∗PI.”
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

50 OptoTerminal Programmer’s Reference Manual
The “{flags}” parameter has type “ellipse_flags,” which is
an enumerated type with the following legal values:

ELLIPSE_NORMAL
Draw the specified arc in the foreground color.

ELLIPSE_FILL
Draw the specified arc in the foreground color, and fill
the arc with the background color. If only this flag is
specified, the boundaries of the filled region are the arc
and a line segment connecting the endpoints of the arc.
(Also known as ELLIPSE_CONNECT_ENDS.)

ELLIPSE_CONNECT_CENTER
Draw line segments connecting the endpoints of the arc
to the center in the foreground color.

ELLIPSE_CONNECT_ENDS
Draw a line segment connecting the endpoints of the
arc in the foreground color.

Multiple flags may be specified by combining them with a
boolean AND operation.

4.6.17 GetEllipseSize

Syntax:

getellipsesize(maxleft as reference to ->
integer, maxright as reference to integer,
maxup as reference to integer, maxdown as ->
reference to integer, a as float, xfocal ->
as float, yfocal as float, theta as float,->
gamma as float, flags as ellipse_flags)

Parameters:

{maxleft}
An integer to receive the maximum distance in pixels from
the center to the left edge of the ellipse.

{maxright}
An integer to receive the maximum distance from the center
to the right edge of the ellipse.

{maxup}
An integer to receive the maximum distance from the center
to the top edge of the ellipse.

{maxdown}
An integer to receive the maximum distance from the center
to the bottom edge of the ellipse.

{a}
The distance along the primary focal point vector from the
center to the edge of the ellipse.

{xfocal}
The horizontal distance from the center to the primary focal
point of the ellipse.

{yfocal}
The vertical distance from the center to the primary focal
point of the ellipse.

{theta}
The angle (in radians) from the primary focal point vector
segment to the starting point of the arc. Positive angles
increase counter-clockwise from the primary focal point
vector segment.

{gamma}
The angle (in radians) from the primary focal point vector
segment to the ending point of the arc. Positive angles
increase counter-clockwise from the primary focal point
vector segment.

{flags}
A value of type “ellipse_flags” (see section 4.6.16,
“DrawEllipse”) that determines how the ellipse is drawn.

Description:

This function determines the size of an elliptical arc relative
to its center. The size is determined from the major axis,
focal point, starting angle, and ending angle.

Y

X

Primary focal point vector
(length a)

Primary focal point

Secondary
focal point

gamma

<xfocal>

<yfocal>

Center
(<xoffset>, yoffset>)

theta
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 51
4.6.18 GetScreenPixmap

Syntax:

getscreenpixmap(x as integer, y as ->
integer, width as integer, height as ->
integer) returns color[]

Parameters:

{x}
The x-position of the first screen location to read (relative to
root).

{y}
The y-position of the first screen location to read (relative to
root).

{width}
The width indicates how many pixels per row should be
copied from the screen.

{height}
The height indicates how many pixels per column should be
copied from the screen.

Description:

This function is used to retrieve the pixel map for a section
of the screen as it is currently drawn. This pixel map indi-
cates the individual colors drawn up to this point in each
pixel location of the screen. The returned array will be a
color array of size "width * height", indicating the colors
drawn so far. Please note that for grayscale units, the color
returned may not be the exact color that was drawn to that
location (but it will map to the same gray color as the origi-
nal). The color drawn at pixel coordinate x,y in the object
(with 0,0 being the top left pixel of the object) has the color
indicated by the "((y * width) + x)"-th element in the
returned array. Any requests for an area off of the screen
will be transparent when drawn using drawpixmap.

4.6.19 UseDrawCache

Syntax:

usedrawcache(cachelevel as anytype)

Parameters:

{cachelevel}
Selects the method for draw caching (see below).

Description:

This function sets the method of draw caching which is
used by the system software to improve graphics perfor-
mance. The parameter “{cachelevel}” is of type
“drawcache_level” and can take on any one of the following
values:

CACHE_OFF
Disables draw caching.

CACHE_ALL
Maintains a cache for all objects in the application (best
performance, highest memory requirement).

CACHE_ENABLED
Maintains a cache for all enabled objects (intermediate
performance and memory requirement).

CACHE_EFFECTIVE_ENABLED
Only maintains a cache for objects that are both
enabled and their ancestors are enabled (tracing back to
root).

Thus, the level of draw caching can be tailored to the mem-
ory requirements of the application. DEPRECATED
USAGE: This function will also accept a boolean value. A
value of “true” for “{cachelevel}” selects CACHE_ALL,
and a value of “false” selects CACHE_OFF.

4.6.20 IgnoreDrawCache

Syntax:

ignoredrawcache(obj as objref, ignore as ->
boolean)

Parameters:

{obj}
A reference to the object desiring to change status.

{flag}
A boolean flag containing the desired status. A value of
"true" sets the object to ignore the drawcache setting, and a
value of "false" sets the object to use the drawcache setting
(the default setting).

Description:

This function is used to cause an object to ignore the draw-
cache settings so it will always get a draw when another
object is drawn in its area.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

52 OptoTerminal Programmer’s Reference Manual
4.6.21 DrawBorder

Syntax:

drawborder (x1 as integer, y1 as integer, ->
x2 as integer, y2 as integer, style as ->
integer, drawFlags as unibyte)

Parameters:

{x1}
The left edge of the border.

{y1}
The top edge of the border.

{x2}
Either the right edge of the border, or the width of the bor-
der rectangle, depending on whether
BDR_WIDTHHEIGHT was specified for the drawFlags
parameter.

{y2}
Either the bottom edge of the border, or the height of the
border rectangle, depending on whether
BDR_WIDTHHEIGHT was specified for the drawFlags
parameter.

{style}
A special integer value that specifies how the border is to be
drawn. Rather than specify your own value for this parame-
ter, you should use either a value created by the PC develop-
ment tool's border editor and stored in the _stylemap array,
or you should use a value returned from the
_CreateBorderStyle function.

{drawFlags}
Flags which modify how the border is drawn. See the
description below.

Description:

This API allows objects to draw complex borders with ease.
To use this function, specify the boundary rectangle for
your border as well as a border style. In general, you should
use either _CreateBorderStyle() to create a border style, or
you should pass in a value that was stored in the global
array _styleMap (this array is only available for workspaces
created using the PC development tool). This style defines
such things as whether the border is flat, or 3d, the border
width, the corner radius, etc.

The drawFlags parameter is one or more of the following
values combined using the OR operator:

BDR_FILL
Fill the interior of the border rectange with the current
background color

BDR_WIDTHHEIGHT
If specified, the x2 and y2 parameters represent the
width and height of the border rectangle. Otherwise, x2
and y2 are the right and bottom edges of the border
rectangle.

BDR_CLEARCURVES
For rounded borders, this flag removes any drawing
that may have occurred in the rectangle specified by x1,
y1, x2 and y2, but outside the corner radius (i.e. it
erases any drawing in the corners of the border when
using a curved border). This is intended for objects
drawing their outside border where previous drawing
code may have drawn outside the border.

BDR_INVERSE
Draw the border in inverse. This causes raised borders
to appear sunken, and sunken borders to appear raised.
Flat borders draw using their natural inverse color.

BDR_FGCURVES
This option is occasionally used for borders on the inte-
rior of an object. Specify this option with a rounded
border to cause the area inside the border rectangle but
outside of the curves to be filled in with the foreground
color.

4.6.22 GetObjPixmapRegion

Syntax:

getobjpixmapregion (x as integer, y as ->
integer, width as integer, height as ->
integer)

Parameters:

{x}
The x-position of the first pixel to read (relative to the
object).

{y}
The y-position of the first pixel to read (relative to the
object).

{width}
The variable passed in as width should contain the desired
width of the resultant pixmap.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 53
{height}
The variable passed in as height should contain the desired
height of the resultant pixmap.

Description:

This function is used to retrieve a region of the pixel map
for an object. This pixel map indicates the individual colors
drawn up to this point in each pixel location for the object
(based on the size of the object given to the resize function).
The returned array will be a color array of size "width *
height", indicating the colors drawn so far. Thus, the color
drawn at pixel coordinate x,y in the object (with 0,0 being
the top left pixel of the region) has the color indicated by the
"(y * width) + x)"-th element in the returned array.

4.7 Rendering Text on the Display

Qlarity includes support for both raster (BDF) and True-
Type (TTF) font resources. This section describes the API
functions to render and paint text using these fonts.

4.7.1 GetBdfTextSize

Syntax:

getbdftextsize(width as reference to ->
integer, height as reference to integer, ->
xoffset as reference to integer, yoffset ->
as reference to integer, font as bdffont, ->
{data}[] as reference? to anytype, flags ->
as font_flags)

Parameters:

{width}
An integer to receive the width of the text box.

{height}
An integer to receive the height of the text box.

{xoffset}
An integer to receive the horizontal offset from the upper
left corner of the rendered region to the origin of the first
character.

{yoffset}
An integer to receive the vertical offset from the upper left
corner of the rendered region to the origin of the first char-
acter.

{font}
The bdffont resource.

{data}
The data to be rendered as text. The type can be a unibyte or
byte array (unistring or string).

{flags}
A value of type “font_flags” (see below) that determines
how the text will be rendered.

Description:

This function finds the size of a given text string and returns
it in the variables passed as parameters. The “{width}” and
“{height}” variables receive the width and height in pixels
of the rendered region. The “{xoffset}” and “{yoffset}”
variables receive the offset from the upper left corner of the
region to the origin of the first rendered character.

The parameter “{flags}” is of type “font_flags,” which is a
type that can have any combination of following legal val-
ues (other font_flags settings are ignored):

FONT_NORMAL
Render the text horizontally with the text in the fore-
ground color and remainder of the region in the back-
ground color.

FONT_VERTICAL
Render the text vertically with the text in the fore-
ground color and the remainder of the region in the
background color. (Most fonts that use Latin characters
do not support this option.)

FONT_INVERSE
Render the text horizontally with the text in the back-
ground color and the remainder of the region in the
foreground color.

FONT_HBASELINE
Instead of calculating the standard width (text fits
exactly in this width), calculate the baseline width
(multiple lines will always have the same xoffset and
thus will always line up properly).

FONT_VBASELINE
Instead of calculating the standard height (text fits
exactly in this height), calculate the baseline height
(multiple lines will always have the same yoffset and
thus will always line up properly).

Multiple flags may be specified by combining them with a
boolean AND operation.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

54 OptoTerminal Programmer’s Reference Manual
Typically, this function is called as a precursor to calling the
DrawBDFText() API function. The “{width},” “{height},”
“{xoffset},” and “{yoffset}” values obtained from this func-
tion call are used as parameters in the call to DrawBdf-
Text().

4.7.2 GetBDFTextFit

Syntax:

getbdftextfit(multiflags[] as reference ->
to multiline_flags, xpos[] as reference ->
to integer, ypos[] as reference to ->
integer, widths[] as reference to ->
integer, heights[] as reference to ->
integer, xoffsets[] as reference to ->
integer, yoffsets[] as reference to ->
integer, indices[] as reference to ->
integer, lengths[] as reference to ->
integer, font as bdffont, data[] as ->
reference? to sametype!, wordbrks[] as ->
reference? to sametype!, linebrks[] as ->
reference? to sametype!, flags as ->
font_flags)

Parameters:

{multiflags}
An array of type “multiline_flags” returned by the function
giving information on how each line was fitted (see below).

{xpos}
An array of integers returned by the function that tells the
relative horizontal offset for where each line of text should
be drawn.

{ypos}
An array of integers returned by the function that tells the
relative vertical offset for where each line of text should be
drawn.

{widths}
An integer array used as both an input and an output. For
input, the 0-th element is used to indicate the total width (in
pixels) of the box that the text needs to fit into (unless
FONT_HFIT is specified, in which case it is ignored). On
return, the width for each line of text will be in the individ-
ual elements of the array, with the 0-th element always con-
taining the final full width of all the text lines (if
FONT_HFIT is specified then this is calculated, otherwise
it is the same value as was passed in).

{heights}
An integer array used as both an input and an output. For

input, the 0-th element is used to indicate the total height (in
pixels) of the box that the text needs to fit into (unless
FONT_VFIT is specified, in which case it is ignored). On
return, the height for each line of text will be in the individ-
ual elements of the array, with the 0-th element always con-
taining the final full height of all the text lines (if
FONT_VFIT is specified then this is calculated, otherwise
it is the same value as was passed in).

{xoffsets}
An integer array used as both an input and an output. For
input, if FONT_HLEFT, FONT_HRIGHT, or
FONT_HCENTER is not specified (by default, this is the
case), the 0-th element is used to determine how far from
the left edge the origin of the first text character should be.
On return, the elements indicate how far from the left edge
each line's origin should be placed.

{yoffsets}
An integer array used as both an input and an output. For
input, if FONT_VTOP, FONT_VBOTTOM, or
FONT_VCENTER is not specified (by default, this is the
case), the 0-th element is used to determine how far from
the top edge the origin of the first text character should be.
On return, the elements indicate how far from the top edge
each line's origin should be placed.

{indices}
An integer array used as both an input and an output. For
input, the 0-th element gives the first index into “{data}”
indicating where to begin the text fitting. Characters before
this index are not fitted. A value of 0 starts at the beginning.
On return, the index to the first character for each line of
text will be in the individual elements of the array, with the
0-th element containing the index where text fitting began.

{lengths}
An integer array used as both an input and an output. For
input, The number of elements of “{data}” to fit, or -1 to
indicate all elements from the starting index to the end of
“{data}.” On return, the number of elements that should be
drawn for each line of text is indicated in the individual ele-
ments of the array, with the 0-th element containing the total
length of data fitted.

{font}
The bdffont resource.

{data}
The data to be rendered as text. The type can be a unibyte or
byte array (unistring or string).
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 55
{wordbrks}
An array of the same type as “{data}” that determines
which characters to treat as word breaks (spaces, tabs, etc.).

{linebrks}
An array of the same type as “{data}” that determines
which characters to treat as line breaks (newline, form feed,
etc.).

{flags}
A value of type “font_flags” (see below) that determines
how the text will be rendered.

Description:

This function tries to find the best text fit for “{data}.” A
good understanding of the GetBDFTextSize and DrawBDF-
Text functions should prelude attempts to use this function.

The parameter “{flags}” is of type “font_flags,” which is a
type that can have any combination of following legal val-
ues (other font_flags settings are ignored):

FONT_NORMAL
Render the text horizontally with the text in the fore-
ground color and remainder of the region in the back-
ground color.

FONT_VERTICAL
Render the text vertically with the text in the fore-
ground color and the remainder of the region in the
background color. (Most fonts that use Latin characters
do not support this option.)

FONT_INVERSE
Render the text horizontally with the text in the back-
ground color and the remainder of the region in the
foreground color.

FONT_DRAWLINEBREAKS
Consider all line break characters as actually drawn
when calculating fit (otherwise line break characters
are NOT drawn).

FONT_DRAWWORDBREAKS
Consider all word break characters as actually drawn
when calculating fit (otherwise word break characters
are NOT drawn).

FONT_NOSOFTBREAKS
Disallow breaking a line anywhere that is not a line
break or a word break.

FONT_HBASELINE
Instead of calculating the standard width (text fits
exactly in this width), calculate the baseline width
(multiple lines will always have the same xoffset and
thus will always line up properly).

FONT_HFIT
Don't use the passed in width, but calculate the actual
width needed to fit all of the given text.

FONT_HABS
Use the 0-th element of the xoffsets array to determine
how far from the left edge the origin of the text should
be placed.

NOTE:
Specifying FONT_HLEFT, FONT_HRIGHT, or
FONT_HCENTER overrides FONT_HABS.

FONT_HLEFT
Fit the text such that it is all left justified.

FONT_HCENTER
Fit the text such that it is all center justified (horizon-
tally).

FONT_HRIGHT
Fit the text such that it is all right justified.

FONT_VBASELINE
Instead of calculating the standard height (text fits
exactly in this height), calculate the baseline height
(multiple lines will always have the same yoffset and
thus will always line up properly).

FONT_VFIT
Don't use the passed in height, but calculate the actual
height needed to fit all of the given text.

FONT_VABS
Use the 0-th element of the yoffsets array to determine
how far from the top edge the origin of the text should
be placed.

NOTE:
Specifying FONT_VTOP, FONT_VBOTTOM, or
FONT_VCENTER overrides FONT_VABS.

FONT_VTOP
Fit the text such that it is all top justified.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

56 OptoTerminal Programmer’s Reference Manual
FONT_VCENTER
Fit the text such that it is all center justified (vertically).

FONT_VBOTTOM
Fit the text such that it is all bottom justified.

Multiple flags may be specified by combining them with a
boolean AND operation.

Typically, this function is called as a precursor to calling the
DrawBDFTextFit() API function. All values obtained from
this function call are used as parameters in the call to
DrawBDFTextFit().

On return, the array “{multiflags}” will contain information
about how each line was rendered. Any combination of the
following flags can be expected:

MULTILINE_SOFTBREAK
Use a boolean AND with this flag and the returned
“{multiflags}” element to determine if the line was ter-
minated by using a soft break.

MULTILINE_WORDBREAK
Use a boolean AND with this flag and the returned
“{multiflags}” element to determine if the line was ter-
minated at a word break element.

MULTILINE_LINEBREAK
Use a boolean AND with this flag and the returned
“{multiflags}” element to determine if the line was ter-
minated at a line break element.

MULTILINE_PARTIAL_WIDTH
Use a boolean AND with this flag and the returned
“{multiflags}” element to determine if the line only fits
partially inside the given width.

MULTILINE_NONE_WIDTH
Use a boolean AND with this flag and the returned
“{multiflags}” element to determine if the line did not
fit at all inside the given width.

MULTILINE_PARTIAL_HEIGHT
Use a boolean AND with this flag and the returned
“{multiflags}” element to determine if the line only fits
partially inside the given height.

MULTILINE_NONE_HEIGHT
Use a boolean AND with this flag and the returned

“{multiflags}” element to determine if the line did not
fit at all inside the given height.

4.7.3 GetBdfFontMetrics

Syntax:

getbdffontmetrics(maxleft as reference to ->
integer, maxright as reference to ->
integer, maxup as reference to integer, ->
maxdown as reference to integer, ->
xnextline as reference to integer, ->
ynextline as reference to integer, font ->
as bdffont, flags as font_flags)

Parameters:

{maxleft}
An integer to receive the maximum distance in pixels from
a character origin to the left edge of any character in the
font.

{maxright}
An integer to receive the maximum distance from a charac-
ter origin to the right edge of any character in the font.

{maxup}
An integer to receive the maximum distance from a charac-
ter origin to the top edge of any character in the font.

{maxdown}
An integer to receive the maximum distance from a charac-
ter origin to the bottom edge of any character in the font.

{xnextline}
An integer to receive the horizontal offset from the origin of
the first character on a line to the origin of the first character
on the next line.

{ynextline}
An integer to receive the vertical offset from the origin of
the first character on a line to the origin of the first character
on the next line.

{font}
The bdffont resource.

{flags}
A value of type “font_flags” (see section 4.7.1) that deter-
mines how the text will be rendered
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 57
Description:

This function returns important metrics for the “{font}”
resource which can be used to determine values for parame-
ters in calls to DrawBdfText(). The diagram below illus-
trates the meaning of the various metrics. This function is
particularly useful when rendering multiple lines of text.

4.7.4 DrawBdfText

Syntax:

drawbdftext(x as integer, y as integer, ->
width as integer, height as integer, ->
xoffset as integer, yoffset as integer, ->
font as bdffont, data[] as reference? to ->
anytype, {flags} as font_flags)

Parameters:

{x}
The x-position of the upper left corner of the rendered
region (relative to the calling object's parent).

{y}
The y-position of the upper left corner of the rendered
region (relative to the calling object's parent).

{width}
The width of the region to use for rendering.

{height}
The height of the region to use for rendering.

{xoffset}
The horizontal offset from the upper left corner of the ren-
dered region to the origin of the first character.

 {yoffset}
The vertical offset from the upper left corner of the rendered
region to the origin of the first character.

{font}
The bdffont resource.

 {data}
The data to be rendered as text. The type can be a unibyte or
byte array (unistring or string).

{flags}
A value of type “font_flags” (see section 4.7.1) which
determines how the text will be rendered.

Description:

This function renders the text contained in “{data}” and
paints the rendered region to the display. The “{width},”
“{height},” “{xoffset},” and “{yoffset}” values are typically
obtained from a call to GetBdfTextSize() or inferred from
metrics obtained from a call to GetBdfFontMetrics(). The
rendered text is clipped if the area of the region defined by
“{width}” and “{height}” is not sufficient, or if the values
of “{xoffset}” and “{yoffset}” place some or all of the text
outside of the rendering region.

4.7.5 DrawBDFTextFit

Syntax:

drawbdftextfit(multiflags[] as reference? ->
to multiline_flags, xpos[] as reference? ->
to integer, ypos[] as reference? to ->
integer, widths[] as reference? to ->
integer, heights[] as reference? to ->
integer, xoffsets[] as reference? to ->
integer, yoffsets[] as reference? to ->
integer, indices [] as reference? to ->
integer, lengths [] as reference? to ->
integer, font as bdffont, data[] as ->
reference? to anytype, flags as font_flags)

Origin of
next line

xnextline

yn
ex

tli
ne

maxdown

maxleft

maxup

maxright

origin
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

58 OptoTerminal Programmer’s Reference Manual
Parameters:

{multiflags}
An array of type “multiline_flags” indicating some infor-
mation on how well the lines fit within the specified region.

{xpos}
An array of integers. The 0-th element indicates the x-posi-
tion of the upper left corner of the rendered region (relative
to the calling object's parent). Subsequent elements identify
the relative horizontal offset from the initial x-position
where each line of text should be drawn.

{ypos}
An array of integers. The 0-th element indicates the y-posi-
tion of the upper left corner of the rendered region (relative
to the calling object's parent). Subsequent elements identify
the relative vertical offset from the initial y-position where
each line of text should be drawn.

{widths}
An array of integers indicating the width for each line of
text.

{heights}
An array of integers indicating the height for each line of
text.

{xoffsets}
An array of integers indicating the horizontal offset from
the upper left corner of the rendered region to the origin of
the first character for each line.

{yoffsets}
An array of integers indicating the vertical offset from the
upper left corner of the rendered region to the origin of the
first character for each line.

{indices}
An array of integers the tells the index into “{data}” where
each line of text begins.

{lengths}
An array of integers indicating the number of elements to
draw in each line of “{data}.”

{font}
The bdffont resource.

{data}
The data to be rendered as text. The type can be a unibyte or
byte array (unistring or string).

{flags}
A value of type “font_flags” (see below) that determines
how the text will be rendered.

Description:

This function renders the text contained in “{data}.” The
parameters are typically obtained by a call to GetBDFText-
Fit(). The rendered text is clipped as necessary.

A good understanding of the GetBDFTextSize and DrawB-
DFText functions should prelude attempts to use this func-
tion.

The parameter “{flags}” is of type “font_flags,” which is a
type that can have any combination of following legal val-
ues (other font_flags settings are ignored):

FONT_NORMAL
Render the text horizontally with the text in the fore-
ground color and remainder of the region in the back-
ground color.

FONT_VERTICAL
Render the text vertically with the text in the fore-
ground color and the remainder of the region in the
background color. (Most fonts that use Latin characters
do not support this option.)

FONT_INVERSE
Render the text horizontally with the text in the back-
ground color and the remainder of the region in the
foreground color.

FONT_DRAW_HPARTIAL
Draw any horizontal lines that are marked as appearing
partially within the fitted text region.

FONT_DRAW_VPARTIAL
Draw any vertical lines that are marked as appearing
partially within the fitted text region.

Multiple flags may be specified by combining them with a
boolean AND operation.

This function is included mostly to increase the efficiency
of drawing multiline text. In Qlarity, it would look some-
thing like the following:
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 59
for tmp = 1 to len(lengths) - 1
drawbdftext(x[0] + x[tmp], y[0] + y[tmp], ->
widths[tmp], heights[tmp],xoffsets[tmp], ->

yoffsets[tmp],thefont,mid(text,->
indices[tmp], lengths[tmp]), flags)
next

4.7.6 GetTTFTextSize

Syntax:

getttftextsize(width as reference to ->
integer, height as reference to integer, ->
xoffset as reference to integer, yoffset ->
as reference to integer, {font} as ttfont,->
facenum as integer, {ptsize} as integer, ->
data[] as reference? to anytype, {flags} ->
as font_flags)

Parameters:

{width}
An integer to receive the width of the text box.

{height}
An integer to receive the height of the text box.

{xoffset}
An integer to receive the horizontal offset from the upper
left corner of the rendered region to the origin of the first
character.

{yoffset}
An integer to receive the vertical offset from the upper left
corner of the rendered region to the origin of the first char-
acter.

{font}
The ttfont resource.

{facenum}
The number for the desired face in the ttfont resource (typi-
cally 0).

{ptsize}
The desired point size of the rendered text.

{data}
The data to be rendered as text (same types as BDF func-
tions allowed).

{flags}
A value of type “font_flags” (see below) that determines
how the text will be rendered.

Description:

This function finds the size of a given text string rendered in
the given point size and typeface. The calculated values are
returned in the variables passed as parameters. The
“{width}” and “{height}” variables receive the width and
height in pixels of the rendered region, respectively. The
“{xoffset}” and “{yoffset}” variables receive the offset
from the upper left corner of this region to the origin of the
first rendered character. The “{flags}” is of type
“font_flags,” which is described in section 4.7.1.

Typically, this function is called as a precursor to calling
DrawTTFText(). The “{width},” “{height},” “{xoffset},”
and “{yoffset}” values obtained from this function call are
used as parameters in the call to DrawTTFText().

4.7.7 GetTTFFontMetrics

Syntax:

getttfontmetrics(maxleft as reference to ->
integer, maxright as reference to integer,->
maxup as reference to integer, maxdown as ->
reference to integer, xnextline as ->
reference to integer, ynextline as ->
reference to integer, font} as ttfont, ->
facenum as integer, ptsize as integer, ->
flags as font_flags)

Parameters:

{maxleft}
An integer to receive the maximum distance in pixels from
a character origin to the left edge of any character in the
font.

{maxright}
An integer to receive the maximum distance from a charac-
ter origin to the right edge of any character in the font.

{maxup}
An integer to receive the maximum distance from a charac-
ter origin to the top edge of any character in the font.

{maxdown}
An integer to receive the maximum distance from a charac-
ter origin to the bottom edge of any character in the font.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

60 OptoTerminal Programmer’s Reference Manual
{xnextline}
An integer to receive the horizontal offset from the origin of
the first character on a line to the origin of the first character
on the next line.

{ynextline}
An integer to receive the vertical offset from the origin of
the first character on a line to the origin of the first character
on the next line.

{font}
The ttfont resource.

{facenum}
The number for the desired face in the ttfont resource (typi-
cally 0).

{ptsize}
The point size.

{flags}
A value of type “font_flags” (see section 4.7.1) that deter-
mines how the text is rendered

Description:

This function returns important metrics for the “{font}”
resource that can be used to determine values for parameters
in calls to DrawTTFText(). It is very similar to the analo-
gous GetBdfFontMetrics() API function.

4.7.8 DrawTTFText

Syntax:

drawttftext(x as integer, y as integer, ->
width as integer, height as integer, ->
xoffset as integer, yoffset as integer, ->
font as ttfont, facenum as integer, ->
ptsize as integer, {data}[]as reference? ->
to anytype, {flags} as font_flags)

Parameters:

{x}
The x-position of the upper left corner of the rendered
region (relative to the calling object's parent).

{y}
The y-position of the upper left corner of the rendered
region (relative to the calling object's parent).

{width}
The width of the region to use for rendering.

{height}
The height of the region to use for rendering.

{xoffset}
The horizontal offset from the upper left corner of the ren-
dered region to the origin of the first character.

 {yoffset}
The vertical offset from the upper left corner of the rendered
region to the origin of the first character.

{font}
The ttfont resource.

{facenum}
The number for the desired face in the ttfont resource (typi-
cally 0).

{ptsize}
The desired point size for the rendered text.

{data}
The data to be rendered as text. The type can be a unibyte or
byte array (unistring or string).

{flags}
A value of type “font_flags” (see section 4.7.1) that deter-
mines how the text is rendered.

Description:

This function renders the text contained in “{data}” and
paints the rendered region to the display. The “{width},”
“{height},” “{xoffset},” and “{yoffset}” values are typically
obtained from a call to GetTTFTextSize() or inferred from
metrics obtained from a call to GetTTFontMetrics(). The
rendered text is clipped if the area of the region defined by
“{width}” and “{height}” is not sufficient, or if the values
of “{xoffset}” and “{yoffset}” place some or all of the text
outside of the rendering region.

4.7.9 SetTTFAngle

Syntax:

setttfangle(theta as float)

Parameters:

{theta}
The angle of the rendered text (in radians, relative to hori-
zontal).
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 61
Description:

This function sets the angle at which text is rendered in
using a ttfont resource, relative to the horizontal plane. The
default angle is 0, indicating standard left-to-right horizon-
tal rendering. This function should be called before
GetTTFTextSize(). The last angle setting persists until the
current message handler returns.

4.7.10 GetSysFontCharacters

Syntax:

getsysfontcharacters(font as sysfont, ->
facenum as integer, bRange as unibyte, ->
eRange as unibyte) returns unibyte[]

Parameters:

{font}
The sysfont resource.

{facenum}
The number for the desired face in a ttfont resource (typi-
cally 0).

{bRange}
The first character to be checked for in a font. Character
codes greater than “{bRange}” but less than “{eRange}”
are also checked.

{eRange}
The last character to be checked for in a font. Character
codes less than “{eRange}” but greater than “{bRange}”
are also checked.

Description:

GetSysFontCharacters returns a unibyte array indicating the
existing character codes between bRange and eRange
(inclusive) in a font.

4.7.11 GetSysTextSize

Syntax:

getsystextsize(width as reference to ->
integer, height as reference to integer,->
xoffset as reference to integer, yoffset ->
as reference to integer, font as sysfont,->
facenum as integer, ptsize as integer,->
data[] as reference? to anytype, flags as ->
font_flags)

Parameters:

{width}
An integer to receive the width of the text box.

{height}
An integer to receive the width of the text box.

{xoffset}
An integer to receive the horizontal offset from the upper
left corner of the rendered region to the origin of the first
character.

{yoffset}
An integer to receive the vertical offset from the upper left
corner of the rendered region to the origin of the first char-
acter.

{font}
The sysfont resource. This may be either a BDF or a True-
Type font.

{facenum}
The number for the desired face. This value is only used
with TrueType fonts and is typically zero (0).

{ptsize}
The desired point size of the rendered text. This value is
ignored unless font specifies a TrueType font.

{data}
The data to be rendered as text. The type can be a unibyte or
byte array (unistring, string or charstr).

{flags}
A value of type "font_flags" (see GetBDFTextSize) that
determines how the text will be rendered.

Description:

This function finds the size of a given text string rendered in
the given point size and typeface. The calculated values are
returned in the variables passed as parameters. The
"{width}" and "{height}" variables receive the width and
height in pixels of the rendered region, respectively. The
"{xoffset}" and "{yoffset}" variables receive the offset from
the upper left corner of this region to the origin of the first
rendered character.

The "{flags}" is of type "font_flags"

Typically, this function is called as a precursor to calling
DrawSysText(). The "{width}," "{height}," "{xoffset},"
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

62 OptoTerminal Programmer’s Reference Manual
and "{yoffset}" values obtained from this function call may
be used as parameters in the call to DrawSysText().

4.7.12 GetSysTextFit

Syntax:

getsystextfit(multiflags[] as reference ->
to multiline_flags, xpos[] as reference ->
to integer, ypos[] as reference to ->
integer, widths[] as reference to ->
integer, heights[] as reference to ->
integer, xoffsets[] as reference to ->
integer, yoffsets[] as reference to ->
integer, indices[] as reference to ->
integer, lengths[] as reference to ->
integer, font as sysfont, facenum as ->
integer, ptsize as integer, data[] as ->
reference? to sametype!, wordbrks[] as ->
reference? to sametype!, linebrks[] as ->
reference? to sametype!, flags as ->
font_flags)

Parameters:

{multiflags}
An array of type "multiline_flags" returned by the function
giving information on how each line was fitted.

{xpos}
An array of integers returned by the function that tells the
relative horizontal offset for where each line of text should
be drawn.

{ypos}
An array of integers returned by the function that tells the
relative vertical offset for where each line of text should be
drawn.

{widths}
An integer array used as both an input and an output. For
input, the 0-th element is used to indicate the total width (in
pixels) of the box that the text needs to fit into (if
FONT_HFIT is specified, this value is only used for align-
ment purposes). On return, the width for each line of text
will be in the individual elements of the array, with the 0-th
element always containing the final full width of all the text
lines (if FONT_HFIT is specified then this is calculated,
otherwise it is the same value as was passed in).

{heights}
An integer array used as both an input and an output. For
input, the 0-th element is used to indicate the total height (in
pixels) of the box that the text needs to fit into (if

FONT_VFIT is specified, this value is only used for align-
ment purposes). On return, the height for each line of text
will be in the individual elements of the array, with the 0-th
element always containing the final full height of all the text
lines (if FONT_VFIT is specified then this is calculated,
otherwise it is the same value as was passed in).

{xoffsets}
An integer array used as both an input and an output. For
input, if FONT_HLEFT, FONT_HRIGHT, or
FONT_HCENTER is not specified (by default, this is the
case), the 0-th element is used to determine how far from
the left edge the origin of the first text character should be.
On return, the elements indicate how far from the left edge
each line's origin should be placed.

{yoffsets}
An integer array used as both an input and an output. For
input, if FONT_VTOP, FONT_VBOTTOM, or
FONT_VCENTER is not specified (by default, this is the
case), the 0-th element is used to determine how far from
the top edge the origin of the first text character should be.
On return, the elements indicate how far from the top edge
each line's origin should be placed.

{indices}
An integer array used as both an input and an output. For
input, the 0-th element gives the first index into "{data}"
indicating where to begin the text fitting. Characters before
this index are not fitted. A value of 0 starts at the beginning.
On return, the index to the first character for each line of
text will be in the individual elements of the array, with the
0-th element containing the index where text fitting began.

{lengths}
An integer array used as both an input and an output. For
input, The number of elements of "{data}" to fit, or -1 to
indicate all elements from the starting index to the end of
"{data}." On return, the number of elements that should be
drawn for each line of text is indicated in the individual ele-
ments of the array, with the 0-th element containing the total
length of data fitted.

{font}
The sysfont resource. This may be either a BDF or a True-
Type font.

{facenum}
The number for the desired face. This value is only used
with TrueType fonts and is typically zero (0).
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 63
{ptsize}
The desired point size of the rendered text. This value is
ignored unless font specifies a TrueType font.

{data}
The data to be rendered as text. The type can be a unibyte or
byte array (unistring, string or charstr).

{wordbrks}
An array of the same type as "{data}" that determines
which characters to treat as word breaks (spaces, tabs,
etc...).

{linebrks}
An array of the same type as "{data}" that determines
which characters to treat as line breaks (newline, form feed,
etc...).

{flags}
A value of type "font_flags" that determines how the text
will be rendered.

Description:

This function tries to find the best text fit for "{data}." A
good understanding of the GetSysTextSize and DrawSys-
Text functions should prelude attempts to use this function.

The parameter "{flags}" is of type font_flags, which is a
type that can have any combination of legal values.

4.7.13 GetSysFontMetrics

Syntax:

getsysfontmetrics(maxleft as reference to ->
integer, maxright as reference to integer,->
maxup as reference to integer, maxdown as ->
reference to integer, xnextline as ->
reference to integer, ynextline as ->
reference to integer, font as sysfont, ->
facenum as integer, ptsize as integer, ->
flags as font_flags)

Parameters:

{maxleft}
An integer to receive the maximum distance in pixels from
a character origin to the left edge of any character in the
font.

{maxright}
An integer to receive the maximum distance from a charac-
ter origin to the right edge of any character in the font.

{maxup}
An integer to receive the maximum distance from a charac-
ter origin to the top edge of any character in the font.

{maxdown}
An integer to receive the maximum distance from a charac-
ter origin to the bottom edge of any character in the font.

{xnextline}
An integer to receive the horizontal offset from the origin of
the first character on a line to the origin of the first character
on the next line.

{ynextline}
An integer to receive the vertical offset from the origin of
the first character on a line to the origin of the first character
on the next line.

{font}
The sysfont resource. This may be either a BDF or a True-
Type font.

{facenum}
The number for the desired face. This value is only used
with TrueType fonts and is typically zero (0).

{ptsize}
The point size. This value is ignored unless font specifies a
TrueType font.

{flags}
A value of type "font_flags" (See section 4.7.1, “GetBdf-
TextSize” for a description)

Description:

GetSysFontMetrics function returns important metrics for
the "{font}" resource which can be used to determine values
for parameters in calls to DrawSysText ().

4.7.14 DrawSysText

Syntax:

drawsystext(x as integer, y as integer, ->
width as integer, height as integer, ->
xoffset as integer, yoffset as integer, ->
font as sysfont, facenum as integer, ->
ptsize as integer, data[] as reference? ->
to anytype, flags as font_flags)
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

64 OptoTerminal Programmer’s Reference Manual
Parameters:

{x}
The x-position of the upper left corner of the rendered
region (relative to the calling object's parent).

{y}
The y-position of the upper left corner of the rendered
region (relative to the calling object's parent).

{width}
The width of the region to use for rendering.

{height}
The height of the region to use for rendering.

{xoffset}
The horizontal offset from the upper left corner of the ren-
dered region to the origin of the first character.

{yoffset}
The vertical offset from the upper left corner of the rendered
region to the origin of the first character.

{font}
The sysfont resource. This may be either a BDF or a True-
Type font.

{facenum}
The number for the desired face. This value is only used
with TrueType fonts and is typically zero (0).

{ptsize}
The desired point size of the rendered text. This value is
ignored unless font specifies a TrueType font.

{data}
The data to be rendered as text. The type can be a unibyte or
byte array (unistring, string or charstr).

{flags}
A value of type "font_flags" (See section 4.7.1, “GetBdf-
TextSize” for a description)

Description:

DrawSysText renders the text contained in "{data}" and
paints the rendered region to the display. The "{width},"
"{height}," "{xoffset}," and "{yoffset}" values are often
obtained from a call to GetSysTextSize() or inferred from
metrics obtained from a call to GetSysFontMetrics(). The
rendered text is clipped if the area of the region defined by

"{width}" and "{height}" is not sufficient, or if the values
of "{xoffset}" and "{yoffset}" place some or all of the text
outside of the rendering region.

4.7.15 DrawSysTextFit

Syntax:

drawsystextfit(multiflags[] as reference? ->
to multiline_flags, xpos[] as reference? ->
to integer, ypos[] as reference? to ->
integer, widths[] as reference? to ->
integer, heights[] as reference? to ->
integer, xoffsets[] as reference? to ->
integer, yoffsets[] as reference? to ->
integer, indices[] as reference? to ->
integer, lengths[] as reference? to ->
integer, font as sysfont, facenum as ->
integer, ptsize as integer, data[] as ->
reference? to anytype, flags as font_flags)

Parameters:

{multiflags}
An array of type "multiline_flags" indicating some informa-
tion on how well the lines fit within the specified region.

{xpos}
An array of integers. The 0-th element indicates the x-posi-
tion of the upper left corner of the rendered region (relative
to the calling object's parent). Subsequent elements identify
the relative horizontal offset from the initial x-position
where each line of text should be drawn.

{ypos}
An array of integers. The 0-th element indicates the y-posi-
tion of the upper left corner of the rendered region (relative
to the calling object's parent). Subsequent elements identify
the relative vertical offset from the initial y-position where
each line of text should be drawn.

{widths}
An array of integers indicating the width for each line of
text.

{heights}
An array of integers indicating the height for each line of
text.

{xoffsets}
An array of integers indicating the horizontal offset from
the upper left corner of the rendered region to the origin of
the first character for each line.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 65
{yoffsets}
An array of integers indicating the vertical offset from the
upper left corner of the rendered region to the origin of the
first character for each line.

{indices}
An array of integers the tells the index into "{data}" where
each line of text begins.

{lengths}
An array of integers indicating the number of elements to
draw in each line of "{data}."

{font}
The sysfont resource. This may be either a BDF or a True-
Type font.

{facenum}
The number for the desired face. This value is only used
with TrueType fonts and is typically zero (0).

{ptsize}
The desired point size of the rendered text. This value is
ignored unless font specifies a TrueType font.

{data}
The data to be rendered as text. The type can be a unibyte or
byte array (unistring or string).

{flags}
A value of type "font_flags" (see below) that determines
how the text will be rendered.

Description:

This function renders the text contained in "{data}." The
parameters are typically obtained by a call to GetSysText-
Fit(). The rendered text is clipped as necessary. A good
understanding of the GetSysTextSize and DrawSysText
functions should prelude attempts to use this function.

The parameter "{flags}" is of type font_flags , which is a
type that can have any combination of legal values.

4.8 Controlling the Speaker

4.8.1 PlayNote

Syntax:

playnote(note as byte, duration as integer)

Parameters:

{note}
The pitch from 0 to 86.

{duration}
The duration of the note in milliseconds.

Description:

The PlayNote function plays a note at the specified pitch for
the specified duration. The duration is rounded to the near-
est multiple of 20 milliseconds. The function returns imme-
diately and the rates are queued.

Values for each note number are shown in the table below.

Number Note Frequency

0 rest note 0 Hz

1 A#/Bb 58.25 Hz

2 B 61.875 Hz

3 C 65.5 Hz

4 C#/Db 69.25 Hz

5 D 73.5 Hz

6 D#/Eb 77.75 Hz

7 E 82.5 Hz

8 F 87.25 Hz

9 F#/Gb 92.5 Hz

10 G 98 Hz

11 G#/Ab 103.75 Hz

12 A 110 Hz

13 A#/Bb 116.5 Hz

14 B 123.75 Hz

15 C 131 Hz

16 C#/Db 138.5 Hz

17 D 147 Hz

18 D#/Eb 155.5 Hz

19 E 165 Hz

20 F 174.5 Hz

21 F#/Gb 185 Hz

22 G 196 Hz
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

66 OptoTerminal Programmer’s Reference Manual
23 G#/Ab 207.5 Hz

24 A 220 Hz

25 A#/Bb 233 Hz

26 B 247.5 Hz

27 C 262 Hz

28 C#/Db 277 Hz

29 D 294 Hz

30 D#/Eb 311 Hz

31 E 330 Hz

32 F 349 Hz

33 F#/Gb 370 Hz

34 G 392 Hz

35 G#/Ab 415 Hz

36 A 440 Hz

37 A#/Bb 466 Hz

38 B 495 Hz

39 Midl C 524 Hz

40 C#/Db 554 Hz

41 D 588 Hz

42 D#/Eb 622 Hz

43 E 660 Hz

44 F 698 Hz

45 F#/Gb 740 Hz

46 G 784 Hz

47 G#/Ab 830 Hz

48 A 880 Hz

49 A#/Bb 932 Hz

50 B 990 Hz

51 C 1048 Hz

52 C#/Db 1108 Hz

53 D 1176 Hz

54 D#/Eb 1244 Hz

55 E 1320 Hz

Number Note Frequency

56 F 1396 Hz

57 F#/Gb 1480 Hz

58 G 1568 Hz

59 G#/Ab 1660 Hz

60 A 1760 Hz

61 A#/Bb 1864 Hz

62 B 1980 Hz

63 C 2096 Hz

64 C#/Db 2216 Hz

65 D 2352 Hz

66 D#/Eb 2488 Hz

67 E 2640 Hz

68 F 2792 Hz

69 F#/Gb 2960 Hz

70 G 3136 Hz

71 G#/Ab 3320 Hz

72 A 3520 Hz

73 A#/Bb 3728 Hz

74 B 3960 Hz

75 C 4192 Hz

76 C#/Db 4432 Hz

77 D 4704 Hz

78 D#/Eb 4976 Hz

79 E 5280 Hz

80 F 5584 Hz

81 F#/Gb 5920 Hz

82 G 6272 Hz

83 G#/Ab 6640 Hz

84 A 7040 Hz

85 A#/Bb 7456 Hz

86 B 7920 Hz

Number Note Frequency
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 67
4.8.2 PlayNoteNotify

Syntax:

playnotenotify (obj as objref, parm as ->
integer, note as byte, duratio} as integer)

Parameters:

{obj}
The object to notify when the sound has finished.

{parm}
Optional parameter to send with the message produced
when the sound has been played.

{note}
The pitch from 0 to 86.

{duration}
The duration of the note in milliseconds.

Description:

This function plays a note at the specified pitch for the spec-
ified duration. The duration is rounded to the nearest multi-
ple of 20 milliseconds. The function returns immediately
and the rates are queued. After the note has played, the
MSG_SOUND_DONE message is sent directly to the spec-
ified object, with parm as an optional parameter.

4.8.3 PlaySound

Syntax:

playsound (sound as _audio)

Parameters:

{sound}
The audio resource to play.

Description:

This function plays the audio resource identified by
“{sound}.” This function will only play the desired audio
resource on units that have the audio decoder option
installed.

4.8.4 PlaySoundNotify

Syntax:

playsoundnotify (obj as objref, parm as ->
integer, sound as _audio)

Parameters:

{obj}
The object to notify when the sound has finished.

{parm}
Optional parameter to send with the message produced
when the sound has been played.

{sound}
The audio resource to play.

Description:

This function plays the audio resource identified by
“{sound}.” After the sound has played, the
MSG_SOUND_DONE message is sent directly to the spec-
ified object, with parm as an optional parameter

4.8.5 StopSpkr

Syntax:

stopspkr()

Description:

This function immediately silences the speaker, terminating
any note that is currently playing, and clears the speaker
queue.

4.8.6 SetVolume

Syntax:

setvolume(direction as volume_adjust)

Parameters:

{direction}
A value of type "volume_adjust" (see below) that deter-
mines how to adjust the volume.

Description:

This function adjusts the volume of the unit at runtime. The
adjustment is temporary and is forgotten when power is
removed from the terminal. Permanent changes to the vol-
ume setting must be made with the Power On Setup utility
or the SetSystemSetting() API function.

The SetVolume() function takes an argument of type
"volume_adjust," which is a defined type with the following
legal values:
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

68 OptoTerminal Programmer’s Reference Manual
VOLUME_LOUDER
Adjust the volume up.

VOLUME_QUIETER
Adjust the volume down.

4.9 Array and String Functions

4.9.1 Len

Syntax:

len(arr[] as reference? to anytype) ->
returns integer

Parameters:

{arr}
An array of any type.

Description:

This function returns the number of elements in the array.

4.9.2 Left

Syntax:

left(arr[] as reference? to sametype!, ->
len as integer) returns sametype!

Parameters:

{arr}
An array of any type.

{len}
The number of data elements to extract.

Description:

This function returns an array that contains the first “{len}”
elements of “{arr}.”

4.9.3 Right

Syntax:

right(arr[] as reference? to sametype!, ->
len as integer) returns sametype!

Parameters:

{arr}
An array of any type.

{len}
The number of data elements to extract.

Description:

This function returns an array that contains the last “{len}”
elements of “{arr}.”

4.9.4 Mid

Syntax:

mid(arr[] as reference? to sametype!, ->
index as integer, len as integer) returns ->
sametype!

Parameters:

{arr}
An array of any type.

{index}
The location of the first data element to extract (0-based).

{len}
The number of data elements to extract, or -1 to indicate all
elements from the element at “{index}” to the end of
“{arr}.”

Description:

This function returns an array containing “{len}” elements
from “{arr},” starting with the element located at “{index}”
into “{arr}.”

4.9.5 Trim

Syntax:

trim(arr[] as reference? to byte) returns ->
string

Parameters:

{arr}
Byte array.

Description:

This function removes any leading or trailing white space
(spaces, tabs, carriage returns, or line feeds) from the byte
array, returning the remaining characters.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 69
4.9.6 Find

Syntax:

find(match[] as reference? to sametype!, ->
start as integer, length as integer, ->
pattern[] as reference? to sametype!) ->
returns integer

Parameters:

{match}
An array of any type to examine.

{start}
The location in “{match}” to begin the search; elements
before the “{start}” element are not searched. 0 starts at the
beginning.

{length}
The number of elements after “{start}” to search in
“{match},” or -1 to indicate all elements from “{start}” to
the end of “{match}.”

{pattern}
The pattern of data elements to search for in “{match}.”

Description:

This function searches for “{pattern}” in “{match}.” If
“{pattern}” is found, then the index of the first element of
“{pattern}” in “{match}” is returned. If “{pattern}” is not
found in “{match},” -1 is returned.

4.9.7 Concat

Syntax:

concat(strA[] as reference? to sametype!, ->
strB[] as reference? to sametype!) ->
returns sametype!

Parameters:

{strA}
An array of any type to be placed first in the returned array.

{strB}
An array of the same type as “{strA}” to be placed last in
the returned array.

Description:

This function concatenates the arrays “{strA}” and
“{strB}” and returns the resulting array.

NOTE:
It is generally easier to use the plus (+) operator to concate-
nate arrays.

4.9.8 Redim

Syntax:

redim(arr[] as reference to anytype, ->
newsize as integer)

Parameters:

{arr}
An array of any type.

{newsize}
The new size of the array “{arr}.”

Description:

This function resizes an array of any type to the size speci-
fied by “{newsize}.” No data is lost unless the array is
decreased in size. If the array is increased in size, then the
new elements of the array are initialized to the default value
for the data type assigned to “{arr}.”

4.9.9 ArrayOperation

Syntax:

arrayoperation (arr1[] as reference to ->
anytype, arr2[] as reference? to anytype, ->
op as ArrayOp)

Parameters:

{arr1}
An array variable that will receive the result of the array
operation. Depending on the operation to be performed, this
parameter may also be used as an input parameter to the
function

{arr2}
An array used in the operation. How this parameter will be
used is determined by the op parameter.

{op}
Determines which operation to perform on the input
array(s).

Description:

This function performs one of several array operations,
based on the value of the op parameter. The op parameter
can take on the following values:
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

70 OptoTerminal Programmer’s Reference Manual
ARRAY_CONVERT
This operation converts arr2[] to the same data type as
arr1[] and stores the result of that conversion in arr1[].
Most types of arrays can be converted. This operation
is particularly useful when you are developing a work-
space that uses both unicode strings and traditional byte
strings and you need to convert between the two for-
mats.

ARRAY_PALETTE
Both arr2[] and arr1[] must be of type byte or type
color. Arr2[] should contain 256 elements. For each
element in arr1[], the following assignment is per-
formed: arr1[i] = arr2[arr1[i]]. This performs, in
essence a software palette translation on a pixmap. This
is used for the translucency and plasma effects you see
in some objects.

ARRAY_REVERSE
Reverses the order of elements in arr2[] and stores the
result in arr1[].

ARRAY_PFIELD
Reserved for future use. Do not use.

4.9.10 FreeArrayHandle

Syntax:

freearrayhandle(handle as arrayhandle)

Parameters:

{handle}
An array handle that was previously allocated with a call to
AllocateArrayHandle.

Description:

This function releases an array handle that was allocated by
calling AllocateArrayHandle and reclaims the memory used
by that handle. After the handle has been freed, it is invalid
and should not be used any more.

This function is an advanced API function and if misused
may cause the terminal to exhaust its memory resources.

4.9.11 ReadArrayHandle

Syntax:

readarrayhandle (data[] as reference to ->
anytype, handle as arrayhandle)

Parameters:

{data}
An array which will receive a copy of the array associated
with handle

{handle}
An array handle that was previously allocated with a call to
CreateArrayHandle

Description:

This function reads an array associated with an array handle
and stores the array in data. You must call this function only
with array handles that have been allocated with the Allo-
cateArrayHandle function and which have not been freed by
calling FreeArrayHandle.

4.9.12 AllocateArrayHandle

Syntax:

allocatearrayhandle(data[] as reference? ->
to anytype) returns arrayhandle

Parameters:

{data}
An array to be associated with the returned handle.

Description:

This function makes a copy of the array that is passed in as
the data parameter and returns a handle which can be used
to access the new copy via the ReadArrayHandle function.

When the array is no longer needed, you MUST call Free-
ArrayHandle to release the array handle. This function is an
advanced API function and if misused may cause the termi-
nal to exhaust its memory resources.

4.9.13 ReverseFind

Syntax:

reversefind (match[] as reference? to ->
sametype!, start as integer, len as ->
integer, pattern[] as reference? to ->
sametype!) returns integer

Parameters:

{match}
An array of any type to examine.

{start}
The location in "{match}" to begin the search; characters
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 71
after the "{start}" character are not searched. -1 starts at the
emd.

{len}
The number of elements before "{start}" to search in
"{match}," or -1 to indicate all elements from "{start}" to
the beginning of "{match}.".

{pattern}
The pattern of data elements to search for in "{match}."

Description:

This function searches for "{pattern}" in "{match}." If
"{pattern}" is found, then the index of the first element of
"{pattern}" in "{match}" is returned. If "{pattern}" is not
found in "{match}," -1 is returned.

4.9.14 Replace

Syntax:

replace (match[] as reference to ->
sametype!, start as integer, len as ->
integer, pattern[] as reference? to ->
sametype!, newdata[] as reference? to ->
sametype!, count as integer) returns integer

Parameters:

{match}
An array of any type to examine.

{start}
The location in "{match}" to begin the search; characters
before the "{start}" character are not searched. 0 starts at
the beginning.

{len}
The number of elements after "{start}" to search in
"{match}," or -1 to indicate all elements from "{start}" to
the end of "{match}."

{pattern}
The pattern of data elements to search for in "{match}."

{newdata}
What to replace an occurrence of "{pattern}" with in
"{match}."

{count}
The maximum number of times "{pattern}" should be
replaced by "{newdata}" in "{match}," or -1 to replace all
occurrences of "{pattern}" by "{match}."

Description:

This function searches for "{pattern}" in "{match}" and
replaces up to "{count}" occurrences with "{newdata}."
The returned value indicates how many replacements actu-
ally occurred.

4.10 Conversion Functions

4.10.1 Str

Syntax:

str(value as reference? to anytype) ->
returns string

Parameters:

{value}
The value to convert to a string.

Description:

This function converts “{value}” to a string representing the
value. The system software uses heuristic rules to determine
how to convert different types of values. Integers and float-
ing point numbers are converted to text representations of
the passed value (with sign, if negative, and decimal point,
if floating point). Bytes and unibytes are treated as unsigned
integers. Booleans convert to the strings “true” or “false.”
Objrefs convert to a string containing the referenced object's
name. Arrays convert to a comma-separated list of con-
verted values enclosed in brackets. User-defined data types
such as enumerations are treated as integers.

4.10.2 Val

Syntax:

val(value as reference to anytype, text[] ->
as reference? to byte)

Parameters:

{value}
A variable (of any type) to receive the converted value.

{text}
An array of bytes (or a string) to be converted.

Description:

This function converts the text in “{text}” to a variable of
“{value}'s” type and stores the result in “value.” The con-
versions follow a similar heuristic to the Str() API function.
Enumerations cannot be assigned a value with Val().
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

72 OptoTerminal Programmer’s Reference Manual
If “{value}” is an array, then “{text}” should be a list of val-
ues separated by commas and enclosed within brackets ([]).
Alternatively, if “{value}” is an array of bytes, unibytes, or
integers, “{text}” may contain text enclosed in double
quotes. Each character in the quoted string is converted and
assigned to a corresponding array member.

4.10.3 FromBytes

Syntax:

frombytes(var as reference to anytype, ->
toset[] as byte, bigendian as boolean)

Parameters:

{var}
A variable (see description below) to receive the binary
data.

{toset}
A byte array containing the binary data.

{bigendian}
A flag indicating the endianness of the data in “{toset}.” A
value of “true” indicates big endian byte order, while a
value of “false” indicates little endian byte order.

Description:

This function stores the binary data in “{toset}” in variable
“{var}.” This is useful for extracting variable data (such as
integers or floating point numbers) from a byte stream.
Only certain built-in data types are supported, and the
“{toset}” array must be the correct size for “{var}'s” data
type, as follows:

4.10.4 GetBytes

Syntax:

getbytes(tobreak as anytype, bigendian as ->
boolean) returns byte[]

Parameters:

{tobreak}
The variable (see description below) containing the desired
binary data.

{bigendian}
The desired byte order for the data stored in “{tobreak}.” A
value of “true” stores the data in big endian byte order,
while a value of “false” stores the data in little endian byte
order.

Description:

This function returns a byte array containing the binary data
from the “{tobreak}” variable. Only certain built in data
types for “{tobreak}” are supported, and the length of the
returned byte array is as follows:

4.10.5 LowerCase

Syntax:

lowercase(str[] as byte) returns string

Parameters:

{str}
The string to convert to lower case.

Description:

This function converts all capital letters in the “{str}” string
to lower case letters and returns the resulting string.

Data Type Size

Integer 4 bytes

Float 4 or 8 bytes (in IEEE 754 format)1

1. When an 8-byte array is passed for storage in a float vari-
able, the data in “{toset}” is assumed to be a double precision
floating point number, and it is automatically converted to sin-
gle precision before storage in “{var}.”

Boolean 1 byte

Byte 1 byte

Unibyte 2 bytes

Array (of one of the
above data types)

Size of data type (see above) *
Number of elements

Data Type Size

Integer 4 bytes

Float 4 bytes (in IEEE 754 format)

Boolean 1 byte

Byte 1 byte

Unibyte 2 bytes

Array (of one of the
above data types)

Size of data type (see above) *
Number of elements
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 73
4.10.6 UpperCase

Syntax:

uppercase(str[] as byte) returns string

Parameters:

{str}
The string to convert to upper case.

Description:

This function converts all lower case letters in “{str}” to
upper case letters and returns the resulting string.

4.11 Math Functions

4.11.1 Sin

Syntax:

sin(x as float) returns float

Parameters:

{x}
The floating point operand.

Description:

This function returns the Sine of “{x}.”

4.11.2 Cos

Syntax:

cos(x as float) returns float

Parameters:

{x}
The floating point operand.

Description:

This function returns the Cosine of “{x}.”

4.11.3 Tan

Syntax:

tan(x as float) returns float

Parameters:

{x}
The floating point operand.

Description:

This function returns the Tangent of “{x}.”

4.11.4 Asin

Syntax:

asin(x as float) returns float

Parameters:

{x}
The floating point operand.

Description:

This function returns the Arc Sine of “{x}.”

4.11.5 Acos

Syntax:

acos(x as float) returns float

Parameters:

{x}
The floating point operand.

Description:

This function returns the Arc Cosine of “{x}.”

4.11.6 Atan

Syntax:

atan(x as float) returns float

Parameters:

{x}
The floating point operand.

Description:

This function returns the Arc Tangent of “{x}.”

4.11.7 Power

Syntax:

power(x as float, exp as float) returns float

Parameters:

{x}
The base operand (floating point).
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

74 OptoTerminal Programmer’s Reference Manual
{exp}
The exponent operand (floating point).

Description:

This function returns “{x}” raised to the “{exp}” power.

4.11.8 Exp

Syntax:

exp({x} as float) returns float

Parameters:

{x}
The exponent operand (floating point).

Description:

This function returns e raised to the “{x}” power.

4.11.9 Ln

Syntax:

ln(x as float) returns float

Parameters:

{x}
The floating point operand.

Description:

This function returns the natural logarithm of “{x}.”

4.11.10 Sqrt

Syntax:

sqrt(x as float) returns float

Parameters:

{x}
The floating point operand.

Description:

This function returns the square root of “{x}.”

4.12 User Message Functions

4.12.1 UserBroadcastMsg

Syntax:

userbroadcastmsg(startobj as objref, ->
msgnum as message, parm as integer, donow ->
as boolean)

Parameters:

{startobj}
First object in Z-order to receive the message. Only this
object and its children will receive the message. Specify a
value of “default” to send the message to all objects.

{msgnum}
The user message to send.

{parm}
The integer parameter to associate with the sent message.

{donow}
A flag to select preemption of the current message while the
user message is processed.

Description:

This function sends the “{msgnum}” user message as a
broadcast message; it will go to all objects (enabled or dis-
abled) starting with “{startobj}” in Z-order. Any object with
a handler for “{msgnum}” is eligible to handle the message.
Messages sent with this function cannot be terminated by a
handler. The return value of the handler is ignored. The
“{parm}” parameter may be set to any integer value and
may be used for any purpose. If “{donow}” is set to “true,”
processing of the current message is suspended while the
user message is processed by the system. When the user
message processing is complete, this function returns and
the current message continues processing. Any pending
exceptions are thrown in the calling function. Setting
“{donow}” to “false” causes the user message to be
enqueued and handled as any other message.

4.12.2 UserSendMsg

Syntax:

usersendmsg(startobj as objref, msgnum as ->
message, parm as integer, donow as boolean)
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 75
Parameters:

{startobj}
First object in Z-order to receive the message. Only this
object and its children will receive the message. Specify a
value of “default” to send the message to all objects.

{msgnum}
The user message to send.

{parm}
The integer parameter to associate with the sent message.

{donow}
A flag to select preemption of the current message while the
user message is processed

Description:

This function sends the “{msgnum}” user message as a nor-
mal message; it will go only to enabled objects starting with
“{startobj}” in Z-order. Any object with a handler for
“{msgnum}” is eligible to handle the message. Messages
sent with this function can be terminated by a handler
returning “true.” If “false” is returned, the message contin-
ues through Z-order.

The “{parm}” parameter may be set to any integer value
and may be used for any purpose. If “{donow}” is set to
“true,” processing of the current message is suspended
while the user message is processed by the system. When
the user message processing is complete, this function
returns and the current message continues processing. Any
pending exceptions are thrown in the calling function. Set-
ting “{donow}” to “false” causes the user message to be
enqueued and handled as any other message.

4.12.3 UserDirectMsg

Syntax:

userdirectmsg(startobj as objref, msgnum ->
as message, parm as integer, donow as ->
boolean) returns boolean

Parameters:

{startobj}
The object to which the message is being sent.

{msgnum}
The user message to send.

{parm}
The integer parameter to associate with the sent message.

{donow}
A flag to select preemption of the current message while the
user message is processed

Description:

This function sends a user message directly to the
“{startobj}” object. If “{startobj}” has a handler for
“{msgnum}” and “{donow}” is “true,” the handler is imme-
diately called and executed. Otherwise, the “{msgnum}”
message is posted in the messaging queue as a direct mes-
sage to “{startobj}.” The return value is the value returned
by the called handler (if “{donow}” is “true”) or “false” if
“{startobj}” has no handler for “{msgnum}” (or if
“{donow}” is “false”). The message is delivered whether
“{startobj}” is enabled or disabled.

4.12.4 FakeKeyMsg

Syntax:

fakekeymsg(msgtype as fake_key, keycode ->
as UNIBYTE)

Parameters:

{msgtype}
The type of key message to post.

{keycode}
The keycode of the key to post.

Description:

This function allows the programmer to introduce a simu-
lated key message into the messaging system (simulating a
physical key press or release). The variable “{msgtype}”
must be one of the following:

KEY_PUSH
KEY_REPEAT
KEY_RELEASE

4.12.5 FakeScreenMsg

Syntax:

fakescreenmsg(msgtype as fake_screen, x1 ->
as integer, y1 as integer, x2 as integer, ->
y2 as integer)

Parameters:

{msgtype}
Type of screen message to post.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

76 OptoTerminal Programmer’s Reference Manual
{x1}
The x-location of the simulated screen event (for
SCREEN_PUSH and SCREEN_RELEASE messages). For
SCREEN_MOVE events, this is the x-location at the start of
the move event.

{y1}
The y-location of the simulated screen event (for
SCREEN_PUSH and SCREEN_RELEASE messages). For
SCREEN_MOVE events, this is the y-location at the start of
the move event.

{x2}
For SCREEN_MOVE events, this is the x-location at the
end of the move event. This parameter is ignored for other
types of screen events.

{y2}
For SCREEN_MOVE events, this is the y-location at the
end of the move event. This parameter is ignored for other
types of screen events.

Description:

This function allows the programmer to introduce a fake
screen message into the messaging system. The variable
“{msgtype}” must be one of the following:

SCREEN_PUSH
SCREEN_MOVE
SCREEN_RELEASE

4.13 User Input Capture

Some objects in Qlarity may want to capture or pre-process
user input messages for themselves. Input messages are
touch screen, keyboard, and keypad messages. To provide
this, a capture list identifies objects wishing to receive input
messages before they are passed through the normal mes-
saging tree. Any object may appear in the list, but it will
only appear once.

Input messages are handled as follows:

• All input messages go to the objects in the capture list
first.

• Each object in the capture list is treated as a root object
(receiving all touch screen messages regardless of loca-
tion).

• Container objects in the capture list behave normally by
passing the message to their children and then receiving a
second pass. If an object in the capture list is not enabled
back to root, that object does not capture an input mes-
sage (although it still appears in the capture list).

• If an input message is killed while being processed by the
capture list, it does not pass to other objects in the cap-
ture list or to root for normal message processing. If an
input message is not killed, normal message processing
occurs on the message (it is passed to root, which may
cause objects in the capture list to receive the message
twice).

The following API functions are used to examine and mod-
ify the capture list.

4.13.1 SetCapture

Syntax:

setcapture(obj as objref)

Parameters:

{obj}
The object to appear in the capture list.

Description:

This function places “{obj}” in the capture list (if it is not
already). If it is already in the list, the object is moved to the
front of the list.

4.13.2 GetCapture

Syntax:

getcapture(obj as objref) returns integer

Parameters:

{obj}
The object to look for in the capture list.

Description:

This function checks the capture list to determine if “{obj}”
appears in the list. The return value indicates the location of
the object in the list with 0 being first, 1 second, and so on.
A –1 indicates that the object does not appear in the list.

4.13.3 RemoveCapture

Syntax:

removecapture(obj as objref)
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 77
Parameters:

{obj}
The object to remove from the capture list.

Description:

This function looks for “{obj}” in the capture list. If it is
found, it is removed from the list.

4.14 Exception Functions

Refer to section 2.15, “Exception Handling” for general
information and to the OptoTerminal Qlarity Foundry
User’s Manual for more specific information on the Qlarity
exception handling system. Exception names (types) and
description strings are listed in Appendix B.

4.14.1 Throw

Syntax:

throw(loc[] as reference? to byte, msg[] ->
as reference? to byte)

Parameters:

{loc}
An array of bytes (or a string) indicating where the excep-
tion occurred (i.e., in which function).

{msg}
An array of bytes (or string) detailing specific information
about what exception occurred.

Description:

This function throws a user exception to the exception han-
dling system. “{loc}” should give information on where the
exception was thrown, and “{msg}” should give details on
what actual exception occurred. The error type is always
EXCEPT_USER, and the error level is always EXLEV_
USER.

4.14.2 GetException

Syntax:

getexception(msg[] as reference to byte, ->
errtype as reference to unibyte, ->
errlevel as reference to unibyte) returns ->
boolean

Parameters:

{msg}
An array of bytes (or a string) to receive specific informa-
tion about what exception occurred.

{errtype}
A unibyte to receive the error type.

{errlevel}
A unibyte to receive the error level.

Description:

This function retrieves information about the last exception
that occurred and is typically called in error handling code
(such as inside an on error block). Once information about
an exception is retrieved via a call to GetException(), the
exception is removed from the exception queue; system
handling for the exception is terminated. If the user excep-
tion handling code is insufficient, the exception can be
returned to the exception queue by calling Rethrow().

Important:
If you do not call GetException() in an “on error” clause,
the exception remains in the exception queue. A MSG_
ERROR message is sent through the messaging system if
there are still errors in the queue at the end of a message.

4.14.3 Rethrow

Syntax:

rethrow()

Description:

This function returns an exception to the exception queue
after it has been removed by a previous call to
GetException(). Rethrow() is typically called inside error
handling code (such as inside an on error block) when an
exception is retrieved that is not handled in that block of
code.

4.15 User Non-Volatile Configuration
Functions

The user configuration block is a nonvolatile section of sys-
tem memory that can be used for any purpose. Typically, it
is used to store configuration data that is specific to the user
application. Data written to this memory is persistent across
power cycles. Up to 8 kilobytes of data can be stored in the
user configuration block.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

78 OptoTerminal Programmer’s Reference Manual
4.15.1 ReadUserConfig

Syntax:

readuserconfig(len as integer) returns ->
byte[]

Parameters:

{len}
The number of bytes to read from the user configuration
block.

Description:

This function reads “{len}” number of bytes from the user
configuration block and returns them in a byte array. If the
bytes were not previously written with a call to WriteUser-
Config(), the bytes will contain garbage.

4.15.2 WriteUserConfig

Syntax:

writeuserconfig(cfg[] as reference? to byte)

Parameters:

{cfg}
An array of bytes to write to the user configuration block.

Description:

This function writes the bytes contained in “{cfg}” to the
user configuration block. These bytes may subsequently be
retrieved with a call to ReadUserConfig(). Since flash mem-
ory will fatigue and eventually fail after many write cycles
(100,000+), care should be taken to avoid excessive calls to
this function.

4.16 File System Functions

The Qlarity-based terminal implements a simple file system
for storage of user data in flash, non-volatile memory. The
file system supports a directory structure (of any depth)
with path directory names delimited by either a forward
slash (/) or a backslash (\). Directory and file names are lim-
ited to 128 characters in length, and the maximum path
length is 256 characters.

The file system root directory is designated by a single for-
ward slash (/) or backslash (\). Any path beginning with / or
\ starts at the root directory. If a path does not start with / or

\, it is considered to be relative to the current directory. The
root directory is the default initial current directory.

This section describes functions for creating and using the
file system. Since flash memory will fatigue and eventually
fail after many write cycles (100,000+), care should be
taken to avoid excessive calls to these functions.

4.16.1 GetAvailFilespace

Syntax:

getavailfilespace() returns integer

Description:

This function returns an estimate of the file space available
for storing user data. As there is some storage overhead in
the file system, the amount that is available for storing user
data is slightly less than the returned value.

4.16.2 MakeDir

Syntax:

makedir(name[] as reference? to byte)

Parameters:

{name}
A string containing the desired name (and possibly path) for
the new directory.

Description:

This function creates a new directory in the file system at
the specified location. If the path included in “{name}”
begins with / or \, it starts with the root directory; otherwise
it is relative to the current directory.

4.16.3 ChangeCurDir

Syntax:

changecurdir(name[] as reference? to byte)

Parameters:

{name}
A string containing the desired path and directory name to
make the current directory.

Description:

This function changes the current directory to the specified
directory.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 79
4.16.4 GetCurDir

Syntax:

getcurdir() returns string

Description:

This function returns a string containing the current direc-
tory.

4.16.5 GetDirEntry

Syntax:

getdirentry(index as integer) returns string

Parameters:

{index}
The index of the desired directory entry (see below).

Description:

This function lists the contents of the current directory. If
“{index}” is 0, the first entry in the current directory is
returned. Subsequent calls to GetDirEntry() with “{index}”
set to -1 return subsequent entries in the directory. An
empty string ("") is returned if no more entries are available.
If the file system is accessed with other API function calls
that alter the file system or current directory (such as
ChangeCurDir()), GetDirEntry(0) should always be called
before GetDirEntry(-1) or the returned results will be
invalid.

Calling GetDirEntry(N) will return the Nth entry in the
directory or an empty string ("") if the Nth entry does not
exist.

4.16.6 EraseFile

Syntax:

erasefile(name[] as reference? to byte)

Parameters:

{name}
A string containing the name (possibly including path) of
the file to remove.

Description:

This function removes the specified file from the file sys-
tem. If the path included in “{name}” begins with / or \, it
starts with the root directory; otherwise it is relative to the
current directory. This function also erases directories.

4.16.7 GetFileInfo

Syntax:

getfileinfo(name[] as reference? to byte, ->
size as reference to integer, ->
usedfilespace as reference to integer, ->
flags as reference to fileinfo_flags)

Parameters:

{name}
A string containing the name (possibly including path) of
the desired file.

{size}
A variable to receive the size of the file in bytes (directories
return a size of 0 bytes).

{usedfilespace}
A variable to receive the number of bytes allocated to the
file by the file system (which includes file system over-
head).

{flags}
A variable of type “fileinfo_flags” to receive information
about the file (see below).

Description:

This function returns information about a file in the file sys-
tem. The actual size of the specified file is returned in the
“{size}” variable. The number of bytes that the file con-
sumes in the file space is returned in the “{usedfilespace}”
variable.

The “{flags}” parameter is a variable of type
“fileinfo_flags,” which can take on the following legal val-
ues (logically ORed together):

FILEINFO_ISTEXT
Indicates that the file was created in text mode.

FILEINFO_ISBIN
Indicates that the file was created in binary mode.

FILEINFO_ISDIR
Indicates that the file is a directory.

FILEINFO_ISOPEN
Indicates that the file has been opened with a previous
call to OpenFile().
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

80 OptoTerminal Programmer’s Reference Manual
To check the attributes of the file, logically AND “{flags}”
with the appropriate value, and check to see if it is equal to
that flag (i.e., “{flags}” AND FILEINFO_ISOPEN ==
FILEINFO_ISOPEN).

If the path included in “{name}” begins with / or \, it starts
with the root directory; otherwise it is relative to the current
directory.

4.16.8 OpenFile

Syntax:

openfile(name[] as reference? to byte, ->
flags as file_flags) returns filedesc

Parameters:

{name}
A string containing the name (possibly including path) of
the desired file.

{flags}
A combination of the following values (logically ANDed
together):

FILE_READ
Open file for reading (if FILE_WRITE is not specified,
FILE_NO_CREATE is automatic and FILE_APPEND
cannot be specified).

FILE_WRITE
Open file for writing.

FILE_TEXT
Open file in text mode (FILE_BINARY may not be
specified).

FILE_BINARY
Open file in binary mode (FILE_TEXT may not be
specified).

FILE_NO_CREATE
Do not create the file or destroy old file contents (it
must exist).

FILE_APPEND
When opening a file for writing, do not destroy old file
contents, and adjust file position to be at the end of the
file.

Description:

This function opens a file for accessing the data and returns
a file handle used to reference the file in other function
calls. When opening, at least FILE_READ or FILE_
WRITE must be specified. If neither FILE_TEXT nor
FILE_BINARY is specified, the access mode is determined
as follows: if the file exists, it is opened in the same mode in
which it was created; if the file does not exist, it is opened in
text mode by default (as if FILE_TEXT were specified).
Files opened in text mode do not support overwriting data in
the file. There are a limited number of files that can be open
at any one time (currently 7).

4.16.9 CloseFile

Syntax:

closefile(fnum as filedesc)

Parameters:

{fnum}
File handle returned from an OpenFile() call.

Description:

This function closes a file. The “{fnum}” file handle is
invalid after a call to this function.

4.16.10 ReadFile

Syntax:

readfile(fnum as filedesc, var as ->
reference to anytype)

Parameters:

{fnum}
File handle of desired file.

{var}
Variable (of any type) to receive data read from the file.

Description:

This function reads data from the specified file and stores
the data in variable “{var}.” Data is read starting at the cur-
rent position in the file. If the access mode of the file is
binary, the number of bytes needed for “{var}” is read from
the file and stored in “{var}.” For arrays in binary mode, the
size of the array determines the number of items read from
the file. In text mode, one line of data (bytes up to but not
including the newline character 0x10) is read from the file
and is converted to “{var}'s” data type, as with a call to the
Val() API function. The resulting value is stored in “{var}.”
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 81
4.16.11 WriteFile

Syntax:

writefile(fnum as filedesc, data as ->
reference? to anytype)

Parameters:

{fnum}
File handle of the desired file.

{data}
A variable (of any type) containing data to write to the file.

Description:

This function writes data to the specified file based on the
file's access method. If the file is in binary mode, the data is
written in bytes exactly as it is in “{data}.” In binary mode,
bytes in the file are overwritten if the current file position is
not at the end of the file. In text mode, the current file posi-
tion must be at the end of the file. Also, the data is con-
verted to a string (as with a call to the Str() API function),
and the resulting string is written to the file followed by a
newline character (0x10).

4.16.12 SetFilePos

Syntax:

setfilepos(fnum as filedesc, offset as ->
integer, absolute as boolean)

Parameters:

{fnum}
File handle of the desired file.

{offset}
An integer containing the offset to be added to the current
position (or the beginning of the file).

{absolute}
A flag determining the basis for the new position calcula-
tion. A value of “true” adds “{offset}” from the beginning
of the file. A value of “false” adds “{offset}” to the current
file position.

Description:

This function sets the current read/write position for the
specified file. To reset the position to the beginning of the
file, use an offset of 0 and absolute as “true.” (An offset of -

1 is the end of the file.) For files in text mode, the position
and offset refer to the line number in the file. For files in
binary mode, these refer to the byte offset in the file.

4.16.13 GetFilePos

Syntax:

getfilepos(fnum as filedesc) returns integer

Parameters:

{fnum}
File handle of the desired file.

Description:

This function returns the current position in the file. For
files in text mode, this refers to the line number of the cur-
rent line in the file. For files in binary mode, the current
position is a byte offset into the file.

4.16.14 EndOfFile

Syntax:

endoffile(fnum as filedesc) returns boolean

Parameters:

{fnum}
File handle of the desired file.

Description:

This function determines if the current position in the file is
at the end of the file. A value of “true” is returned if this is
the case, other “false” is returned.

4.16.15 EraseFileSpace

Syntax:

erasefilespace()

Description:

This function unconditionally erases the entire file space
(all files and directories). USE WITH CAUTION.

4.16.16 RenameFile

Syntax:

renamefile(name[] as reference? to byte, ->
newname[] as reference? to byte)
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

82 OptoTerminal Programmer’s Reference Manual
Parameters:

{name}
A string containing the old name (possibly including path)
of the file to rename.

{newname}
A string containing the new name (possibly including path)
to be used to refer to the file.

Description:

This function will rename a file that is contained in the flash
file system.

4.17 Qlarity Foundry Functions

These functions are only available in Qlarity Foundry, and
calls to them should be enclosed in a “#if _TOOL/ #endif”
directive to prevent their inclusion in the runtime applica-
tion.

4.17.1 Tool_Persist

Syntax:

tool_persist(x as reference to anytype)

Parameters:

{x}
The name of a variable modified in a tool message handler.

Description:

This function informs Qlarity Foundry that an object prop-
erty has been modified in a tool message handler. Qlarity
Foundry must be informed of the change in order to update
the application properly. Only call this if you want a value
permanently saved. See section 3.7, “Tool Messages” for
more details.

4.17.2 Tool_Trace

Syntax:

tool_trace(str as string)

Parameters:

{str}
A message to display in Qlarity Foundry.

Description:

This function causes Qlarity Foundry to display the mes-
sage contained in “{str}” when the function is called. It is

useful for debugging code. Note that in Layout View, Qlar-
ity Foundry usually only executes handlers for the
MSG_INIT and MSG_DRAW messages (as well as
MSG_ERROR and user messages that originate in these
messages), so any calls to Tool_Trace() must originate from
handlers for these messages.

4.18 Miscellaneous Functions

4.18.1 SetGPIO

Syntax:

setgpio(pins as unibyte, action as ->
gpio_action)

Parameters:

{pins}
A value of type unibyte indicating which outputs to set. The
“gpio_pin” type has been created to simplify use of this
API. Legal values are PIN0, PIN1, PIN2, etc. Multiple val-
ues may be OR'ed together to select any combination of
output pins.

{action}
A value of type “gpio_action” (see below) indicating how
the outputs should be set.

Description:

This function sets the output state of one or more GPIO
pins. The pins must be set to outputs using the SetGPIODi-
rection API function before this function can be used. The
function sets the outputs on the pins selected by “{pins}”
according to the desired “{action}.” Legal values for
“{action}” include:

GPIO_SET
Set the outputs (logic HIGH) on the selected pins.

GPIO_CLEAR
Clear the outputs (logic LOW) on the selected pins.

GPIO_TOGGLE
Toggle the outputs on the selected pins.

4.18.2 ReadGPIO

Syntax:

readgpio(pins as unibyte) returns gpio-pin
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 83
Parameters:

{pins}
A value of type unibyte indicating which inputs to read. The
“gpio-pin” type has been created to simplify use of this API.
Legal values are PIN0, PIN1, PIN2, etc. Multiple values
may be OR'ed together to select any combination of input
pins.

Description:

This function reads the input state of one or more GPIO
pins. (Pins may be set to inputs using the SetGPIODirection
API function). The function reads the inputs on the pins
selected by “{pins}” and returns a unibyte containing the
read values. The return value must be AND'ed with the
appropriate “gpio_pin” to determine the value on that pin. A
non-zero result indicates that the input is set (logic HIGH),
while a zero result indicates that the input is clear (logic
LOW).

4.18.3 SetGPIODirection

Syntax:

setgpiodirection(pins as unibyte, input ->
as boolean)

Parameters:

{pins}
A value of type unibyte indicating which gpio pins to set to
the desired direction. The “gpio-pin” type has been created
to simplify use of this API. Legal values are PIN0, PIN1,
PIN2, etc. Multiple values may be OR'ed together to select
any combination of pins.

{input}
A boolean flag that should be set to TRUE if the desired
direction is input, and FALSE if the desired direction is out-
put.

Description:

This function sets the input/output direction of one or more
GPIO pins. The function sets the pins selected by “{pins}”
to inputs if “{input}” is TRUE, otherwise the pins are set to
outputs.

4.18.4 GetVersion

Syntax:

getversion() returns float

Description:

This function returns the version of the system software
(firmware) currently programmed into the terminal.

4.18.5 GetHardwareInfo

Syntax:

gethardwareinfo(req as hwinfo) returns ->
byte[]

Parameters:

{req}
A value of type “hwinfo” (see below) indicating the desired
hardware information.

Description:

This function returns information about the terminal hard-
ware. It returns a byte array containing the requested infor-
mation. The returned information is determined by the
“{req}” argument. This argument is of type “hwinfo,”
which is an enumerated type with the following legal val-
ues:

HW_ETHERNET
Request information on the Ethernet interface. The
returned byte array contains two bytes. The first byte is
set to 1 if the Ethernet interface is present, otherwise it
is set to 0. The second byte is set to 1 if the Ethernet
link is currently active, otherwise it is set to 0.

HW_TOUCH
Request information on the touch screen. The returned
byte array contains one byte, which is set to 1 if a touch
screen is present, otherwise it is cleared to 0.

HW_KEYPAD
Request information on the keypad. The function
returns a byte array of variable length. The first byte is
set to 1 if a keypad is present, otherwise it is cleared to
0 (and the length of the returned byte array is 1). If a
keypad is present, the remaining bytes in the array con-
tain all possible keycodes for the keypad. The keycodes
must by logically OR’ed with 0x8000 to obtain the
actual keycodes that will be received by the application
via keypad messages.

HW_KEYBOARD
Request information on the keyboard. The returned
byte array contains one byte, which is set to 1 if a key-
board is present, otherwise it is cleared to 0.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

84 OptoTerminal Programmer’s Reference Manual
HW_TEMPCONTROL
Request information on the temperature compensation
controller. The returned byte array contains one byte,
which is set to 1 if a temperature compensation control-
ler is present, otherwise it is cleared to 0.

HW_CLOCK
Request information on the real time clock. The
returned byte array contains one byte, which is set to 1
if a battery-backed real time clock is present, otherwise
it is cleared to 0.

HW_DISPLAY
Request information on the display. The returned byte
array combines four bytes with the display pixel width
stored in the first two bytes (MSB first), and the display
pixel height stored in the last two bytes (MSB first).
Following the four bytes are three bytes indicating
more about the type of display in the following order:
color, tft, and transflective. A value of 0 for any of
those three fields indicates that the display does not
have that property.

HW_DEFAULTAPP
Request information on whether a default application is
available in the unit. The returned byte array contains
one byte, which is set to 1 if a default application is
present, otherwise it is cleared to 0.

HW_MACADDRESS
Request information on what the Ethernet address of
the unit is. The returned byte array contains a six byte
Ethernet address.

HW_AUDIOCODEC
Request information on the audio capabilities of the
terminal. The returned byte array contains one byte,
which is set to 1 if an audio decoder is present, other-
wise it is cleared to 0.

HW_GPIO
Request information on the general purpose digital
input/output (GPIO) capabilities of the terminal. The
returned byte array contains one byte, which is set to 1
if GPIO is present, otherwise it is cleared to 0.

HW_CPU
Request information on the type of CPU present in the
unit, and its execution frequency. The returned byte
array contains the text name of the CPU, a '/' character,

and some text indicating the instruction execution fre-
quency in Hertz.

HW_COMLIST
Request information on which communications ports
are present. The returned byte array will contain a 1 in
every location that a com exists (COM1 would corre-
late with the 0-th element in the array). The size of the
array will depend on how many serial ports are
installed. Serial ports do not exist if there is no corre-
sponding element in the array.

HW_MEMORY
Request statistics on unit memory. The first four ele-
ments of this byte array indicate the total amount of
RAM that the unit has (MSB). The next four elements
indicate the total amount of flash memory available
(MSB). The last four elements indicate an estimate of
the current amount of RAM the unit still has available
(MSB).

4.18.6 SetContrast

Syntax:

setcontrast(direction as contrast_adjust)

Parameters:

{direction}
A value of type “contrast_adjust” (see below) that deter-
mines how to adjust the contrast.

Description:

This function adjusts the contrast of the display at runtime
(i.e., not with Power On Setup). The adjustment is tempo-
rary and is forgotten when power is removed from the ter-
minal. Permanent changes to the contrast setting must be
made with the Power On Setup utility or the SetSystemSet-
ting() API function.

The SetContrast() function takes an argument of type
“contrast_adjust,” which is a defined type with the follow-
ing legal values:

CONTRAST_LIGHTER
Adjust the contrast one step lighter.

CONTRAST_DARKER
Adjust the contrast one step darker.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 85
4.18.7 SetBacklight

Syntax:

setbacklight({command} as backlight_adjust)

Parameters:

{command}
A value of type “backlight_adjust” (see below) that deter-
mines how to adjust the backlight setting.

Description:

This function adjusts the backlight setting of the display at
runtime (i.e., not with Power On Setup). The adjustment is
temporary and is forgotten when power is removed from the
terminal. Permanent changes to the backlight setting should
be made with the Power On Setup facility or the SetSystem-
Setting() API function.

The SetBacklight() function takes an argument of type
“backlight_adjust,” which is a defined type with the follow-
ing legal values:

BACKLIGHT_ON
Turn backlight on (set to previous “on” setting).

BACKLIGHT_OFF
Turn backlight off (power saving mode).

BACKLIGHT_LIGHTER
Adjust the backlight one step lighter.

BACKLIGHT_DARKER
Adjust the backlight one step darker.

4.18.8 EnableKeypadBacklight

Syntax:

enablekeypadbacklight(enable as boolean)

Parameters:

{enable}
A boolean value that sets the state of the keypad backlight.
A setting of TRUE turns on the backlight, while a setting of
FALSE turns it off.

Description:

The EnableKeypadBacklight function sets the current state
of the keypad backlight (if one is available). The setting is
temporary and is forgotten when power is removed from the
terminal. Permanent changes to the keypad backlight setting

should be made with the Power On Setup facility or the Set-
SystemSetting() API function.

4.18.9 SetLED

Syntax:

setled(cmd as ledcmd, lednum as integer)

Parameters:

{cmd}
A value of type “led_cmd” (see below) that determines how
the LED setting is adjusted.

{lednum}
An integer indicating which LED is adjusted.

Description:

This function changes the state (on or off) of one of the key-
pad LEDs. The “{cmd}” parameter of type “led_cmd” is a
defined type with the following legal values:

LED_ON
Turn on the specified LED.

LED_OFF
Turn off the specified LED.

LED_TOGGLE
Toggle the state of the specified LED.

4.18.10 GetTime

Syntax:

gettime(day as reference to integer, ->
month as reference to integer, dig2year ->
as reference to integer, dotw as reference ->
to weekday, hour as reference to integer, ->
minute as reference to integer, second as ->
reference to integer)

Parameters:

{day}
An integer to receive the current day of the month.

{month}
An integer to receive the current month.

{dig2year}
An integer to receive the last two digits of the current year.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

86 OptoTerminal Programmer’s Reference Manual
{dotw}
A variable of type “weekday” (see below) to receive the
current day of the week.

{hour}
An integer to receive the current hour (military time).

{minute}
An integer to receive the current minute.

{second}
An integer to receive the current second.

Description:

This function returns the current time as maintained by the
real time clock hardware.

The variable “{dotw}” is of type “weekday,” which is a
defined type with the follow (self-explanatory) legal values:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

4.18.11 SetTime

Syntax:

settime(day as integer, month as integer, ->
dig2year as integer, dotw as weekday, hour->
as integer, minute as integer, second as ->
integer)

Parameters:

{day}
An integer indicating the current day of the month.

{month}
An integer indicating the current month.

{dig2year}
An integer indicating the last two digits of the current year.

{dotw}
A variable of type “weekday” (see below) indicating the
current day of the week.

{hour}
An integer indicating the current hour (military time).

{minute}
An integer indicating the current minute.

{second}
An integer indicating the current second.

Description:

This function sets the current time which is maintained by
the real time clock hardware. The variable “{dotw}” is of
type “weekday,” which is a defined type with the following
(self-explanatory) legal values:

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

4.18.12 GetTemperature

Syntax:

gettemperature() returns integer

Description:

This function returns the current temperature (degrees Cel-
sius) inside the terminal case. The Qlarity-based hardware
includes a temperature sensor that is used to implement
temperature compensation of display contrast. The sensor is
accurate to approximately ±2° C, and is calibrated by a set-
ting in the Power On Setup utility.

4.18.13 TypeOf

Syntax:

typeof(unique as reference to integer, ->
obj as objref, {name}[] as reference? to ->
byte) returns typeval

Parameters:

{unique}
An integer to receive a type identifier if the property or vari-
able to be typed is user-defined. Built-in types cause 0 to be
stored in this parameter.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 87
{objref}
Objref of the object (default for global) whose property type
will be returned.

{name}
Name of the property/variable whose type will be returned.

Description:

This function determines the type of an object property or
variable. The returned value is of type “TYPEVAL” with
legal values as shown below.

If the object property or variable is a user-defined type, a
unique, non-zero value corresponding to the type will be
stored in “{unique}.”

4.18.14 SetSystemSetting

Syntax:

setsystemsetting({cmd} as syscmd, ->
newvalue as anytype, action as ->
syscmd_action)

Parameters:

{cmd}
A value of type “syscmd” (see below) that determines what
terminal control setting will be modified.

{newvalue}
The new value for the selected terminal control setting. This
value expects an integer if not otherwise noted in the
description of the “syscmd.”

{action}
A value of type “syscmd_action” (see below) that deter-
mines the time at which the new settings take effect.

Description:

This function modifies most of the hardware terminal set-
tings for the Qlarity-based terminal. These settings can also
be saved in the non-volatile flash memory of the terminal,
making the settings effective across power cycles. When
writing changes that are to be saved to the flash, settings are
first written to a pending save area. The pending changes
are only saved to the flash when this function is called with
the command SYS_SAVE.

The “{action}” argument is of type SYSCMD_ACTION
and can take the following values:

SYSACT_DONOW
The new setting will take effect immediately but not
persist after the terminal power is cycled. A value set
using this action will not be saved when this function is
called with the SYS_SAVE command.

SYSACT_ONBOOT
The new setting will not take effect immediately but
should take effect after the terminal power is cycled.
This value is placed into a list of pending changes that
is saved to the non-volatile flash memory when this
function is called with the SYS_SAVE command.

SYSACT_ALWAYS
The new setting will take effect immediately and after
the terminal power is cycled. The current setting is
changed and this value is also placed into a list of pend-
ing changes that is saved to the non-volatile flash mem-
ory when this function is called with the SYS_SAVE
command.

The “{cmd}” argument specifies which setting will be mod-
ified. It is of type “syscmd,” which is an enumerated type
with the following legal values:

SYS_CONTRAST
Sets the display contrast using a scale from 0 to 255,
with 255 the brightest. The value -1 may also be passed
in to cause the current contrast value to be used. Note
that incrementing by one in the scale will not neces-
sarily change the contrast value, and values
returned by GetSystemSetting() may not match
what was passed into SetSystemSetting()! To change
the contrast by one contrast increment, use the SetCon-
trast() function and then pass in -1 for the contrast set-
ting in this function to save to the flash.

Value Type

INTEGER_TYPE Integer

FLOAT_TYPE Floating Point

BOOLEAN_TYPE Boolean

BYTE_TYPE Byte

UNIBYTE_TYPE Unibyte

ARRAY_TYPE Array

OBJREF_TYPE Object Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

88 OptoTerminal Programmer’s Reference Manual
SYS_BACKLIGHT
Sets the display backlight using a scale from 0 to 255,
with 255 the brightest. The value -1 may also be passed
in to cause the current backlight value to be used. Note
that incrementing by one in the scale will not neces-
sarily change the backlight value, and values
returned by GetSystemSetting() may not match
what was passed into SetSystemSetting()! To change
the backlight by one backlight increment, use the Set-
Backlight() function and then pass in -1 for the back-
light setting in this function to save to the flash.

SYS_VOLUME
For units that have an audio decoder, this sets the unit
volume using a scale from 0 to 255, with 255 the loud-
est. The value -1 may also be passed in to cause the cur-
rent volume to be used. Note that incrementing by one
in the scale will not necessarily change the volume, and
values returned by GetSystemSetting() may not match
what was passed into SetSystemSetting()! To change
the volume by one volume increment, use the SetVol-
ume() function and then pass in -1 for the volume set-
ting in this function to save to the flash.

SYS_NOTEAMPLITUDE
For units that have an audio decoder, this sets the
amplitude of the generated note waveforms using a
scale from 0 to 255, with 255 the loudest.

SYS_MODE
Change the current terminal mode (development mode
on, development mode off, and default application). In
this case, “{newvalue}” is of type “syscmd_mode,”
which is an enumerated type with the following legal
values:

MODE_DEVELOFF
MODE_DEVELON
MODE_DEFAULTAPP

If the terminal does not have a default application,
selecting MODE_DEFAULTAPP will be the same as
MODE_DEVELOFF. As there is no “current” value for
this setting, using SYSACT_ DONOW will not do any-
thing, and using SYSACT_ ALWAYS will only set the
pending save setting.

SYS_ORIENT
Change the display orientation (portrait or landscape).
In this case, “{newvalue}” is of type “syscmd_orient,”
which is an enumerated type with four legal values:

ORIENT_PORTRAIT
ORIENT_LANDSCAPE
ORIENT_PORTRAIT2
ORIENT_LANDSCAPE2

SYS_KBDRPTDELAY
For systems with a keyboard interface, change the key-
board repeat delay, which is the amount of time after
the key is pressed before the first repeat character is
generated. In this case, “{newvalue}” is of type
“syscmd_kbdrptdelay,” which is an enumerated type
with the following legal values:

SYS_KBDRPTRATE
For systems with a keyboard interface, change the key-
board repeat rate, which is the number of characters
generated per second after repeat begins. In this case,
“{newvalue}” is of type “syscmd_kbdrptrate,” which is
an enumerated type with the following legal values:

KBDRPTDELAY_250 (Delay = 250 ms)
KBDRPTDELAY_500 (Delay = 500 ms)
KBDRPTDELAY_750 (Delay = 750 ms)
KBDRPTDELAY_1000 (Delay = 1000 ms)

KBDRPTRATE_30_0 (30.0 cps)
KBDRPTRATE_26_7 (26.7 cps)
KBDRPTRATE_24_0 (24.0 cps)
KBDRPTRATE_21_8 (21.8 cps)
KBDRPTRATE_20_0 (20.0 cps)
KBDRPTRATE_18_5 (18.5 cps)
KBDRPTRATE_17_1 (17.1 cps)
KBDRPTRATE_16_0 (16.0 cps)
KBDRPTRATE_15_0 (15.0 cps)
KBDRPTRATE_13_3 (13.3 cps)
KBDRPTRATE_12_0 (12.0 cps)
KBDRPTRATE_10_9 (10.9 cps)
KBDRPTRATE_10_0 (10.0 cps)
KBDRPTRATE_9_2 (9.2 cps)
KBDRPTRATE_8_5 (8.5cps)
KBDRPTRATE_8_0 (8.0cps)
KBDRPTRATE_7_5 (7.5cps)
KBDRPTRATE_6_7 (6.7cps)
KBDRPTRATE_6_0 (6.0 cps)
KBDRPTRATE_5_5 (5.5 cps)
KBDRPTRATE_5_0 (5.0 cps)
KBDRPTRATE_4_6 (4.6 cps)
KBDRPTRATE_4_3 (4.3 cps)
KBDRPTRATE_4_0 (4.0 cps)
KBDRPTRATE_3_7 (3.7 cps)
KBDRPTRATE_3_3 (3.3 cps)
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 89
SYS_KEYRPTDELAY
For systems with a keypad interface, change the keypad
repeat delay, which is the amount of time after the key
is pressed before the first repeat character is generated.
“{newvalue}” is an integer indicating the number of
milliseconds for the delay. The minimum delay is 20
ms and the maximum delay is 2000 ms. The value is
rounded to the nearest 20 ms increment.

SYS_KEYRPTPERIOD
For systems with a keypad interface, change the keypad
repeat period, which is the amount of time between
repeat characters after repeat has begun. “{newvalue}”
is an integer indicating the number of milliseconds for
the delay. The minimum delay is 20 ms and the maxi-
mum delay is 2000 ms. The value is rounded to the
nearest 20 ms increment.

SYS_KEYCLICK
For systems with a keypad interface, enable or disable
the audible key click, which is a short beep generated
whenever a key is pressed. “{newvalue}” must be a
boolean; TRUE enables the key click and FALSE dis-
ables it.

SYS_KEYRPT
For systems with a keypad interface, enable or disable
the key repeat feature. “{newvalue}” must be a bool-
ean; TRUE enables key repeat and FALSE disables it.

SYS_COM1BAUD, SYS_COM2BAUD,
SYS_COM3BAUD, SYS_COM4BAUD,
SYS_COM5BAUD, SYS_COM6BAUD,
SYS_COM7BAUD, SYS_COM8BAUD,
SYS_COM9BAUD, SYS_COM10BAUD
Set the baud rate for the selected serial interface.
“{newvalue}” is of type “syscmd_baud,” which is an
enumerated type with the following legal values:

BAUD_115200
BAUD_57600
BAUD_38400
BAUD_19200
BAUD_14400

BAUD_9600
BAUD_4800
BAUD_2400
BAUD_1200
BAUD_600

SYS_COM1DATABITS, SYS_COM2DATABITS,
SYS_COM3DATABITS, SYS_COM4DATABITS,
SYS_COM5DATABITS, SYS_COM6DATABITS,
SYS_COM7DATABITS, SYS_COM8DATABITS,
SYS_COM9DATABITS, SYS_COM10DATABITS
Set the number of data bits for the selected serial inter-
face. “{newvalue}” is of type “syscmd_databits,”
which is an enumerated type with two legal values:

DATABITS_7
DATABITS_8

SYS_COM1PARITY, SYS_COM2PARITY,
SYS_COM3PARITY, SYS_COM4PARITY,
SYS_COM5PARITY, SYS_COM6PARITY,
SYS_COM7PARITY, SYS_COM8PARITY,
SYS_COM9PARITY, SYS_COM10PARITY
Set the parity for the selected serial interface.
“{newvalue}” is of type “syscmd_parity,” which is an
enumerated type with three legal values:

PARITY_ NONE
PARITY_ODD
PARITY_ EVEN

SYS_COM1STOPBITS, SYS_COM2STOPBITS,
SYS_COM3STOPBITS, SYS_COM4STOPBITS,
SYS_COM5STOPBITS, SYS_COM6STOPBITS,
SYS_COM7STOPBITS, SYS_COM8STOPBITS,
SYS_COM9STOPBITS, SYS_COM10STOPBITS
Set the number of stop bits for the selected serial inter-
face. “{newvalue}” is of type “syscmd_stopbits,”
which is an enumerated type with two legal values:

STOPBITS_1
STOPBITS_2

SYS_COM1FLOWCONTROL,
SYS_COM2FLOWCONTROL,
SYS_COM3FLOWCONTROL,
SYS_COM4FLOWCONTROL,
SYS_COM5FLOWCONTROL,
SYS_COM6FLOWCONTROL,
SYS_COM7FLOWCONTROL,
SYS_COM8FLOWCONTROL,

KBDRPTRATE_3_0 (3.0 cps)
KBDRPTRATE_2_7 (2.7 cps)
KBDRPTRATE_2_5 (2.5 cps)
KBDRPTRATE_2_3 (2.3 cps)
KBDRPTRATE_2_1 (2.1 cps)
KBDRPTRATE_2_0 (2.0 cps)
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

90 OptoTerminal Programmer’s Reference Manual
SYS_COM9FLOWCONTROL,
SYS_COM10FLOWCONTROL
Set the flow control for the selected serial interface.
“{newvalue}” is of type “syscmd_flowcontrol,” which
is an enumerated type with three legal values:

FLOWCONTROL_NONE
FLOWCONTROL_XON _OFF
FLOWCONTROL_RTS_CTS

RTS/CTS flow control is only supported for the EIA-
232 interface.

SYS_COM1FLOWTIMEOUT,
SYS_COM2FLOWTIMEOUT
Set the flow control transmit timeout for the selected
serial interface. “{newvalue}” is of type integer and can
be any number from 0 to 65535 (zero meaning no time-
out). It tells how many 20 ms intervals to wait (if neces-
sary) to send any character before timing out.

SYS_IPADDRESS
For terminals with an Ethernet interface, set the IP
address of the terminal. “{newvalue}” is a 4-byte array
containing the new IP address.

SYS_IPSUBNET
For terminals with an Ethernet interface, set the subnet
mask. “{newvalue}” is a 4-byte array containing the
new subnet mask.

SYS_IPGATEWAY
For terminals with an Ethernet interface, set the gate-
way IP address. “{newvalue}” is a 4-byte array con-
taining the new gateway IP address.

SYS_USEDRAWCACHE
Change the status of whether the unit uses draw cach-
ing to increase draw performance. “{newvalue}” is of
type “drawcache_level”. The values are:

CACHE_ALL
CACHE_OFF
CACHE_ENABLED
CACHE_EFFECTIVE_ENABLED

SYS_PASSWORD
Change the password used to enter the Power On Setup
utility. “{newvalue}” is a unibyte array containing
exactly sixteen elements. To allow the use of multiple

input methods to access Power On Setup (on units with
some combination of keypad, keyboard, and touch
screen), use the following constants in place of the cor-
responding Power On Setup keys on the input source
(i.e., for the Enter key on the keyboard, use
POSKEY_ENTER rather than KEY_ENTER). Other-
wise, key codes may be used to define the appropriate
key sequence. However, all sequences must have a
POSKEY_ENTER in them, and keys following this
key are ignored. Note that for the keyboard, only the
bits in KEY_ASCII_MASK are used. Available POS-
KEY keys on all input devices are as follows:

POSKEY_UP
POSKEY_DOWN
POSKEY_LEFT
POSKEY_RIGHT
POSKEY_ENTER

The following POSKEY keys are also available on key-
boards and some keypads:

POSKEY_ESC
POSKEY_0
POSKEY_1
POSKEY_2
POSKEY_3
POSKEY_4
POSKEY_5
POSKEY_6
POSKEY_7
POSKEY_8
POSKEY_9

As there is no “current” value for this setting, using
SYSACT_DONOW will not do anything, and using
SYSACT_ALWAYS will only set the pending save set-
ting.

SYS_USEPASSWORD
Specify whether or not a password is required to get
full functionality in the Power On Setup utility.
“{newvalue}” must be of type “syscmd_usepassword.”
As there is no “current” value for this setting, using
SYSACT_DONOW will not do anything, and using
SYSACT_ALWAYS will only set the pending save set-
ting. The values are:

USEPASSWORD_OFF
USEPASSWORD_ON
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 91
SYS_TEMPERATURE
Set this value to the current temperature to calibrate the
temperature reported by the terminal. “{newvalue}”
must be a float.

SYS_FEEDBACK_TYPE
Specify the method of feedback that the unit will use to
report development information as well as any severe
runtime errors through. “{newvalue}” must be of type
“syscmd_feedback” and must at least have one of the
methods selected. The values are:

FBTYPE_SERIAL
FBTYPE_VIDEO
FBTYPE_UDP

The values can be combined together to produce any
combination desired (using the “AND” operator as in
“FBTYPE_SERIAL AND FBTYPE_VIDEO”).

SYS_FEEDBACK_IPADDRESS
If the unit is Ethernet enabled and using UDP feedback,
this option specifies the IP address to send all UDP
feedback information to. “{newvalue}” is therefore a 4-
byte array containing the IP address.

SYS_FEEDBACK_FPORT
If the unit is Ethernet enabled and using UDP feedback,
this option specifies the foreign port number to send all
UDP feedback packets to. “{newvalue}” in this case is
an integer and can be any number between 0 and
65535.

SYS_FATALREBOOTTIMEOUT
This is the number of 20 ms increments to wait after
hitting a major system error before rebooting. A value
of 0 (the default) is interpreted as indefinitely. Hope-
fully, you will never need this.

Two additional values are also legal for “{cmd}:”

SYS_KEYPADBACKLIGHT
For systems with a keypad interface and keypad back-
light, turn the backlight on or off. “{newvalue}” must
be a boolean; TRUE turns the backlight on and FALSE
turns it off.

SYS_AUTOSHIFT
For systems with a keypad interface and Auto Shift
capability (such as the QTERM-G55), enable or dis-
able the Auto Shift feature. When Auto Shift is off, the

Shift Key behaves like any other key. “{newvalue}”
must be a boolean; TRUE enables the Auto Shift fea-
ture and FALSE turns it off.

SYS_SAVE
Causes the terminal settings that are pending to be
saved to the terminal's non-volatile flash memory.
“{newvalue}” is a boolean value that determines
whether the system is reset after the new terminal set-
tings are saved. A value of TRUE will cause the system
to reset (RESET_NORMAL). The parameter
“{action}” is ignored.

SYS_CLEAR
Clears the terminal settings that are pending without
saving them to the terminal's non-volatile flash mem-
ory. “{newvalue}” must be set to 0. The parameter
“{action}” is ignored.

SYS_KEYPADGATEDELAY
For systems with a keypad interface, change the keypad
hardware gate delay in the keypad scanning routine.
This is the delay between writing the row latch and
reading the column latch. Some keypads which are
highly resistive and/or capacitive may require longer
delays to read the proper row and column. The actual
value is dimensionless, but higher values will yield
longer delays. If your keypad is not working, try setting
to a higher value. SETTING THIS TO AN INCOR-
RECT VALUE (USUALLY TOO LOW) MAY PRE-
VENT THE KEYPAD FROM FUNCTIONING
PROPERLY! “{value}” is an integer indicating the
delay. Values from 1 to 100 are acceptable.

SYS_AUTOPOWER
For systems with a keypad interface and Auto Power
capability (such as the QTERM-G55), set the mode of
the Auto Power feature. Value is of type
syscmd_powerkeymode. The values are:

POWERKEY_NORMALKEY
POWERKEY_AUTOPOWER

IMPORTANT NOTE:
Changes made to the terminal settings via SetSystemSet-
ting() using SYSACT_ALWAYS and SYSACT_ONBOOT
are not permanent (saved to the non-volatile flash memory)
until SetSystemSetting() is called with the SYS_SAVE
command. Many changes may be made via multiple calls to
SetSystemSetting() before they are saved to the flash using
the SYS_SAVE command.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

92 OptoTerminal Programmer’s Reference Manual
The intent of this command is two-fold: to allow the cre-
ation of a custom terminal configuration facility at the
application level (similar to the built-in Power On Setup
facility) and to allow changing settings during run-time
operation. By creating a custom terminal configuration
facility in an application, any desired subset of the terminal
settings and other application specific settings can be made
available to the user.

4.18.15 GetSystemSetting

Syntax:

getsystemsetting(cmd as syscmd, var as ->
reference to anytype, which as ->
syscmd_readfrom)

Parameters:

{cmd}
A value of type “syscmd” (see section 4.18.14, “SetSystem-
Setting.”) that determines which terminal control setting
will be returned in “{var}.”

{value}
The variable that will receive the value of the system setting
being retrieved.

{which}
A value of type “syscmd_readfrom” that determines the
mode of the setting that is read.

Description:

This function retrieves a value for the terminal setting spec-
ified by “{cmd}.” This parameter is an enumerated type
described in section 4.18.14, “SetSystemSetting.”

There are three versions of each setting; the current setting,
the pending setting, and the saved setting. The current set-
ting is the setting that the terminal is using. The pending set-
ting is any setting that was changed using
SetSystemSetting() and is awaiting a SYS_SAVE command
in order to be saved to the flash. The pending setting may or
may not be the current setting. The saved setting is the value
of the setting that is saved in the non-volatile flash memory.
Each of these values is accessible through the “{which}”
parameter. This parameter must be of type
“syscmd_readfrom” and has the following possible values:

SYSREAD_CURRENT
The current value of the setting being used by the firm-
ware.

SYSREAD_PENDINGSAVE
The value of the setting that is pending a save com-
mand.

SYSREAD_SAVED
The value of the setting that is actually saved.

The variable “{value}” is passed as a reference and receives
the value of the setting. The “{value}” variable must be of
the correct data type for each value of “{cmd}” as follows
(see also section 4.18.14, “SetSystemSetting”):

SYS_CONTRAST integer
SYS_BACKLIGHT integer
SYS_VOLUME integer
SYS_NOTEAMPLITUDE integer
SYS_MODE syscmd_mode
SYS_ORIENT syscmd_orient
SYS_KBDRPTDELAY syscmd_kbdrptdelay
SYS_KBDRPTRATE syscmd_kbdrptrate
SYS_KEYRPTDELAY integer
SYS_KEYRPTPERIOD integer
SYS_KEYCLICK boolean
SYS_KEYRPT boolean
SYS_COM1BAUD syscmd_baud
SYS_COM1DATABITS syscmd_databits
SYS_COM1PARITY syscmd_parity
SYS_COM1STOPBITS syscmd_stopbits
SYS_COM1FLOWCONTROL syscmd_flowcontrol
SYS_COM1FLOWTIMEOUT integer
SYS_COM2BAUD syscmd_baud
SYS_COM2DATABITS syscmd_databits
SYS_COM2PARITY syscmd_parity
SYS_COM2STOPBITS syscmd_stopbits
SYS_COM2FLOWCONTROL syscmd_flowcontrol
SYS_COM2FLOWTIMEOUT integer
SYS_IPADDRESS byte array
SYS_IPSUBNET byte array
SYS_IPGATEWAY byte array
SYS_USEDRAWCACHE drawcache_level
SYS_PASSWORD unibyte array
SYS_USEPASSWORD syscmd_usepassword
SYS_TEMPERATURE float
SYS_FEEDBACK_TYPE syscmd_feedback
SYS_FEEDBACK_IPADDRESS byte array
SYS_FEEDBACK_FPORT integer
SYS_FATALREBOOTTIMEOUT integer
SYS_KEYPADBACKLIGHT boolean
SYS_AUTOSHIFT boolean
SYS_KEYPADGATEDELAY integer
SYS_AUTOPOWER syscmd_powerkeymode
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 93
The following “{cmd}” values are not legal for this func-
tion:

SYS_SAVE
SYS_CLEAR

Note that the following values for “{cmd}” have no defined
current value:

SYS_MODE
SYS_PASSWORD
SYS_USEPASSWORD

4.18.16 SoftReset

Syntax:

softreset(rst as rstmode)

Parameters:

{rst}
A value of type “rstmode” indicating how the reset is to be
performed.

Description:

This function causes the terminal to undergo a warm reboot
cycle. “{rst}” can take the following values:

RESET_NORMAL
Causes the unit to perform a reset as if the power had
been cycled. If the unit is in development mode, it waits
for an application to be loaded.

RESET_LOADAPP
Causes the unit to perform a reset and go directly into
the download application mode.

RESET_ENTER_BL
Causes the unit to perform a reset, entering into the
bootloader where the firmware can be upgraded seri-
ally.

RESET_ENTER_POS
Causes the unit to perform a reset, entering the “Power
On Setup” utility upon reboot.

RESET_TOUCH_CAL
Causes the unit to perform a reset, entering the screens
used to calibrate the touch screen.

4.18.17 GetRandomNum

Syntax:

getrandomnum() returns float

Description:

This function returns a pseudo-random number. The return
value is always a floating point number between 0 to 1.

4.18.18 SeedRandomNum

Syntax:

seedrandomnum()

Description:

This function seeds the random number generator with a
value from an internal hardware timer. Calling this function
at a non-deterministic time (such as a user input event) pro-
duces the best pseudo-random numbers (obtained with calls
to GetRandomNum()).

4.18.19 SetSeedRandomNum

Syntax:

setseedrandomnum(seed as integer)

Description:

This function seeds the random number generator with a
specific value, enabling “pseudo-random” sequences to be
produced (and reproduced). This is most useful for debug-
ging.

4.18.20 WatchdogEnable

Syntax:

watchdogenable(enable as boolean, timeout ->
as integer)

Parameters:

{enable}
A boolean value specifying whether to enable (use “true”)
or disable (use “false”) the watchdog timer.

{timeout}
The desired number of 20 ms intervals that should elapse
before a system reset occurs (1 = 20ms).
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

94 OptoTerminal Programmer’s Reference Manual
Description:

This function enables/disables the software watchdog timer.
The purpose of the watchdog timer is to cause a system
reset if something goes fatally wrong in the system soft-
ware. The time will cause a system reset if the timeout
period expires. For normal operation, the timer should be
periodically reset using the WatchdogReset() API function.

4.18.21 WatchdogReset

Syntax:

watchdogreset()

Description:

This function restarts the timeout period in the watchdog
timer. If the watchdog timer is enabled (via the WatchdogE-
nable() API function), this function must be called periodi-
cally to reset the timer or the system will be reset when the
timeout period elapses. This function has no effect if the
watchdog timer is not enabled.

4.18.22 GetProfileTick

Syntax:

getprofiletick() returns integer

Description:

This function is used to profile execution speed. When this
function is called, it returns the number of profiling ticks
that have occurred since the last time the function was
called. One profile tick is 1/32768 s.

4.18.23 DelayMS

Syntax:

delayms(delay as integer)

Parameters:

{delay}
The desired delay in milliseconds.

Description:

This function delays the requested number of milliseconds
before returning.

4.18.24 GetBinaryResource

Syntax:

getbinaryresource (resourceID as integer)->
returns byte[]

Parameters:

{resourceID}
The identifier of the binary resource.

Description:

This function returns a byte array containing the data of a
binary resource that was included with the application.

4.18.25 SetArrayData

Syntax:

setarraydata(arr[] reference? to ->
sametype!, index as integer, srcdata[] ->
as reference? to sametype!, srcindex as ->
integer, len as integer)

Parameters:

{arr}
An array variable already holding data.

{index}
The location in “{arr}” to start inserting the “{srcdata}.”

{srcdata}
An array containing the data to be inserted into “{arr}.”

{srcindex}
The index into “{srcdata}” indicating the start of the data to
be inserted into “{arr}.”

{len}
The length of the data (or -1 for all) to be copied from
“{srcdata}” to “{arr}.”

Description:

This function copies data from “{srcdata}” into “{arr}.” It is
mostly used to improve efficiency when only parts of an
array change.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 95
4.18.26 CreateCRCTable

Syntax:

createcrctable(width as integer, poly as ->
integer, reflect as boolean) returns ->
integer[]

Parameters:

{width}
The number of bits (minus one) used in the polynomial for
the desired CRC.

{poly}
The polynomial to be used in calculating the CRC (the most
significant bit is always implicitly set, for example;
x^16+x^12+x^5+x^0 is 0x1021).

{reflect}
Whether or not to use a reflected algorithm (reflects incom-
ing data).

Description:

This function is used to generate a CRC table, which is used
in calculating CRCs. More information on specifying CRC
algorithms can be found in “A Painless Guide to CRC Error
Detection Algorithms” by Ross N. Williams. Following are
examples of some common algorithms:

CRC-16/CITT : “{width}” = 16, “{poly}” = 0x1021,
“{reflect}” = FALSE

CRC-32: “{width}” = 32, “{poly}” = 0x04C11DB7,
“{reflect}” = TRUE

CRC-16: “{width}” = 16, “{poly}” = 0x8005,
“{reflect}” = TRUE

Modbus : “{width}” = 16, “{poly}” = 0x8005,
“{reflect}” = TRUE

4.18.27 CalculateCRC

Syntax:

calculatecrc(table[] as reference? to ->
integer, width as integer, reflect as ->
boolean, crcin as integer, reflectout as ->
boolean, xoronout as integer, data[] as ->
reference? to byte) returns integer

Parameters:

{table}
The CRC table calculated from CreateCRCTable.

{width}
The number of bits (minus one) used in the polynomial for
the desired CRC.

{reflect}
Whether or not to use a reflected algorithm (reflects incom-
ing data).

{crcin}
The initial CRC value.

{reflectout}
Whether or not to reflect the final CRC before xor-ing it
with “{xoronout}.”

{xoronout}
The value to xor the final CRC to before returning.

{data}
The array of byte data for which to calculate the CRC.

Description:

This function calculates the CRC for a set of data using the
parameters to describe the algorithm. More information on
specifying CRC algorithms can be found in “A Painless
Guide to CRC Error Detection Algorithms” by Ross N. Wil-
liams.

To continue calculating the CRC for a set of data in multiple
parts, call the function subsequently with the initial CRC
(“{crcin}”) set to the calculated CRC from the previous
call. In all but the final call, “{xoronout}” should be 0 and
“{reflectout}” should be FALSE.

Following are examples of some common algorithms:

CRC-16/CITT : “{width}” = 16, “{reflect}” = FALSE,
“{crcin}” = 0xFFFF, “{reflectout}” = FALSE,
“{xoronout}” = 0x0000

CRC-32 : “{width}” = 32, “{reflect}” = TRUE,
“{crcin}” = 0xFFFFFFFF, “{reflectout}” = TRUE,
“{xoronout}” = 0xFFFFFFFF

CRC-16 : “{width}” = 16, “{reflect}” = TRUE,
“{crcin}” = 0x0, “{reflectout}” = TRUE, “{xoronout}”
= 0x0
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

96 OptoTerminal Programmer’s Reference Manual
Modbus : “{width}” = 16, “{reflect}” = TRUE,
“{crcin}” = 0xFFFF, “{reflectout}” = TRUE,
“{xoronout}” = 0x0

4.18.28 ZlibCompress

Syntax:

zlibcompress(out[] as reference to byte, ->
in[] as reference? to byte)

Parameters:
{out}
A data array to accept the compressed data. This array is
sized to fit the compressed data.

{in}
The uncompressed data.

Description:

This function is used to compress data using the zlib library.
The zlib format is not fully compatible with other zip for-
mats although it is possible to convert a zlib file to one that
is compatible with the gzip file format. For more informa-
tion visit the zlib web site.

4.18.29 ZlibDecompress

Syntax:

zlibdecompress(out[] as reference to byte,->
in[] as reference? to byte)

Parameters:
{out}
A data array to accept the compressed data. This array is
sized to fit the compressed data.

{in}
The uncompressed data.

Description:

This function is used to compress data using the zlib library.
The zlib format is not fully compatible with other zip for-
mats although it is possible to convert a zlib file to one that
is compatible with the gzip file format. For more informa-
tion visit the zlib web site.

4.18.30 SetPalette

Syntax:

setpalette(red[] as reference? to byte, ->
green[] as reference? to byte, blue[] as ->
reference? to byte)

Parameters:
{red}
Eight bit red color palette (256 byte array).

{green}
Eight bit green color palette (256 byte array).

{blue}
Eight bit blue color palette (256 byte array).

Description:

This function sets the color palette for many terminal dis-
plays. Not all terminals support this API. This function is
considered an advanced function. Please contact Technical
Support if you need more details on this API.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

APPENDIX A

BUILT-IN CONSTANTS AND DEFINED TYPES

A.1 Constants

(constant pi := 3.1415926536 as float)

Defined Type Values

arrayOp

ARRAY_CONVERT
ARRAY_PALETTE
ARRAY_REVERSE
ARRAY_PFIELD

arrayHandle NULL_HANDLE

 backlight_adjust

BACKLIGHT_ON
BACKLIGHT_OFF
BACKLIGHT_LIGHTER
BACKLIGHT_DARKER

comm

COM1
COM2
COM3
COM4
COM5
COM6
COM7
COM8
COM9
COM10
COM_INVALID

contrast_adjust
CONTRAST_LIGHTER
CONTRAST_DARKER

drawcache_level

CACHE_OFF
CACHE_ALL
CACHE_ENABLED
CACHE_EFFECTIVE_ENABLED

ellipse_flags

ELLIPSE_NORMAL
ELLIPSE_FILL
ELLIPSE_CONNECT_CENTER
ELLIPSE_CONNECT_ENDS

enable_info
GET_ENABLED
GET_ZENABLED

fake_key
KEY_PUSH
KEY_REPEAT
KEY_RELEASE

fake_screen
SCREEN_PUSH
SCREEN_MOVE
SCREEN_RELEASE

filedesc FILE_NONE

file_flags

FILE_NOFLAGS
FILE_READ
FILE_WRITE
FILE_TEXT
FILE_BINARY
FILE_NO_CREATE
FILE_APPEND

fileinfo_flags

FILEINFO_ISNOT
FILEINFO_ISTEXT
FILEINFO_ISBIN
FILEINFO_ISDIR
FILEINFO_ISOPEN

font_flags

FONT_NORMAL
FONT_VERTICAL
FONT_INVERSE
FONT_DRAW_HPARTIAL
FONT_DRAW_VPARTIAL
FONT_DRAWSPACE
FONT_DRAWLINEBREAKS
FONT_DRAWWORDBREAKS
FONT_NOSOFTBREAKS
FONT_HBASELINE
FONT_HFIT
FONT_HABS
FONT_HLEFT
FONT_HCENTER
FONT_HRIGHT
FONT_VBASELINE
FONT_VFIT
FONT_VABS
FONT_VTOP
FONT_VCENTER
FONT_VBOTTOM

gpio_action
GPIO_SET
GPIO_CLEAR
GPIO_TOGGLE

Defined Type Values
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

98 OptoTerminal Programmer’s Reference Manual
gpio_pin

PIN0
PIN1
PIN2
PIN3
PIN4
PIN5
PIN6
PIN7
PIN_ALL

hwinfo

HW_ETHERNET
HW_TOUCH
HW_KEYPAD
HW_KEYBOARD
HW_TEMPCONTROL
HW_CLOCK
HW_DISPLAY
HW_DEFAULTAPP
HW_MACADDRESS
HW_AUDIOCODEC
HW_GPIO
HW_CPU
HW_COMLIST
HW_MEMORY
HW_KEYPADBACKLIGHT
HW_POWER_OVER_ETHERNET

keyboardcontrol
KEYBOARD_PRESENT
KEYBOARD_WRITECOMMAND
BYTE

ledcmd
LED_ON
LED_OFF
LED_TOGGLE

multiline_flags

MULTILINE_MASK_BREAK
MULTILINE_NOBREAK
MULTILINE_SOFTBREAK
MULTILINE_WORDBREAK
MULTILINE_LINEBREAK
MULTILINE_MASK_WIDTH
MULTILINE_PARTIAL_WIDTH
MULTILINE_NONE_WIDTH
MULTILINE_MASK_HEIGHT
MULTILINE_PARTIAL_HEIGHT
MULTILINE_NONE_HEIGHT

netprotocol
NET_TCP
NET_UDP
NET_RAW

Defined Type Values

poly_flags
POLY_NORMAL
POLY_FILL
POLY_NOCONNECT

position_info

GET_X
GET_Y
GET_WIDTH
GET_HEIGHT
GET_ORIGIN_X
GET_ORIGIN_Y
GET_XGLOBAL
GET_YGLOBAL

rstmode

RESET_NORMAL
RESET_ENTER_BL
RESET_LOADAPP
RESET_ENTER_POS
RESET_TOUCH_CAL

servercomm NULL_SERVER

syscmd

SYS_SAVE
SYS_CLEAR
SYS_CONTRAST
SYS_BACKLIGHT
SYS_MODE
SYS_ORIENT
SYS_KBDRPTDELAY
SYS_KBDRPTRATE
SYS_KEYRPTDELAY
SYS_KEYRPTPERIOD
SYS_KEYCLICK
SYS_KEYRPT
SYS_COM1BAUD
SYS_COM1DATABITS
SYS_COM1PARITY
SYS_COM1STOPBITS
SYS_COM1FLOWCONTROL
SYS_COM2BAUD
SYS_COM2DATABITS
SYS_COM2PARITY
SYS_COM2STOPBITS
SYS_COM2FLOWCONTROL
SYS_IPADDRESS
SYS_IPSUBNET
SYS_IPGATEWAY
SYS_USEDRAWCACHE
SYS_PASSWORD
SYS_USEPASSWORD
SYS_TEMPERATURE
SYS_COM3BAUD

Defined Type Values
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 99
syscmd (continued)

SYS_COM8STOPBITS
SYS_COM8FLOWCONTROL
SYS_COM9BAUD
SYS_COM9DATABITS
SYS_COM9PARITY
SYS_COM9STOPBITS
SYS_COM9FLOWCONTROL
SYS_COM10BAUD
SYS_COM10DATABITS
SYS_COM10PARITY
SYS_COM10STOPBITS
SYS_COM10FLOWCONTROL
SYS_FEEDBACK_TYPE
SYS_FEEDBACK_IPADDRESS
SYS_FEEDBACK_FPORT
SYS_COM1FLOWTIMEOUT
SYS_COM2FLOWTIMEOUT
SYS_COM3DATABITS
SYS_COM3PARITY
SYS_COM3STOPBITS
SYS_COM3FLOWCONTROL
SYS_COM4BAUD
SYS_COM4DATABITS
SYS_COM4PARITY
SYS_COM4STOPBITS
SYS_COM4FLOWCONTROL
SYS_COM5BAUD
SYS_COM5DATABITS
SYS_COM5PARITY
SYS_COM5STOPBITS
SYS_COM5FLOWCONTROL
SYS_COM6BAUD
SYS_COM6DATABITS
SYS_COM6PARITY
SYS_COM6STOPBITS
SYS_COM6FLOWCONTROL
SYS_COM7BAUD
SYS_COM7DATABITS
SYS_COM7PARITY
SYS_COM7STOPBITS
SYS_COM7FLOWCONTROL
SYS_COM8BAUD
SYS_COM8DATABITS
SYS_COM8PARITY
SYS_COM1FLOWTIMEOUT
SYS_COM2FLOWTIMEOUT
SYS_COM3FLOWTIMEOUT
SYS_COM4FLOWTIMEOUT
SYS_COM5FLOWTIMEOUT
SYS_COM6FLOWTIMEOUT

Defined Type Values

syscmd (continued)

SYS_COM7FLOWTIMEOUT
SYS_COM8FLOWTIMEOUT
SYS_COM9FLOWTIMEOUT
SYS_COM10FLOWTIMEOUT
SYS_VOLUME
SYS_NOTEAMPLITUDE
SYS_FATALBOOTTIMEOUT
SYS_KEYPADBACKLIGHT
SYS_AUTOSHIFT
SYS_COM11BAUD
SYS_COM11DATABITS
SYS_COM11PARITY
SYS_COM11STOPBITS
SYS_COM11FLOWCONTROL
SYS_COM11FLOWTIMEOUT
SYS_KEYPADGATEDELAY
SYS_AUTOPOWER

syscmd_action
SYSACT_DONOW
SYSACT_ONBOOT
SYSACT_ALWAYS

syscmd_baud

BAUD_115200
BAUD_57600
BAUD_38400
BAUD_19200
BAUD_14400
BAUD_9600
BAUD_4800
BAUD_2400
BAUD_1200
BAUD_600
BAUD_300

syscmd_databits
DATABITS_7
DATABITS_8

syscmd_feedback
FBTYPE_SERIAL
FBTYPE_VIDEO
FBTYPE_UDP

syscmd_flowcontrol

FLOWCONTROL_NONE
FLOWCONTROL_XON_XOFF
FLOWCONTROL_RTS_CTS
FLOWCONTROL_DTR_DSR

syscmd_kbdrptdelay

KBDRPTDELAY_250
KBDRPTDELAY_500
KBDRPTDELAY_750
KBDRPTDELAY_1000

Defined Type Values
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

100 OptoTerminal Programmer’s Reference Manual
syscmd_kbdrptrate

KBDRPTRATE_30_0
KBDRPTRATE_26_7
KBDRPTRATE_24_0
KBDRPTRATE_21_8
KBDRPTRATE_20_0
KBDRPTRATE_18_5
KBDRPTRATE_17_1
KBDRPTRATE_16_0
KBDRPTRATE_15_0
KBDRPTRATE_13_3
KBDRPTRATE_12_0
KBDRPTRATE_10_9
KBDRPTRATE_10_0
KBDRPTRATE_9_2
KBDRPTRATE_8_5
KBDRPTRATE_8_0
KBDRPTRATE_7_5
KBDRPTRATE_6_7
KBDRPTRATE_6_0
KBDRPTRATE_5_5
KBDRPTRATE_5_0
KBDRPTRATE_4_6
KBDRPTRATE_4_3
KBDRPTRATE_4_0
KBDRPTRATE_3_7
KBDRPTRATE_3_3
KBDRPTRATE_3_0
KBDRPTRATE_2_7
KBDRPTRATE_2_5
KBDRPTRATE_2_3
KBDRPTRATE_2_1
KBDRPTRATE_2_0

syscmd_mode
MODE_DEVELOFF
MODE_DEVELON
MODE_DEFAULTAPP

syscmd_orient

ORIENT_LANDSCAPE
ORIENT_PORTRAIT
ORIENT_LANDSCAPE2
ORIENT_PORTRAIT2

syscmd_parity
PARITY_NONE
PARITY_ODD
PARITY_EVEN

Defined Type Values

syscmd_poskeys

POSKEY_UP
POSKEY_DOWN
POSKEY_LEFT
POSKEY_RIGHT
POSKEY_ENTER
POSKEY_ESC
POSKEY_0
POSKEY_1
POSKEY_2
POSKEY_3
POSKEY_4
POSKEY_5
POSKEY_6
POSKEY_7
POSKEY_8
POSKEY_9

syscmd_powerkeymode
POWERKEY_NORMALKEY
POWERKEY_AUTOPOWER

syscmd_readfrom
SYSREAD_CURRENT
SYSREAD_PENDINGSAVE
SYSREAD_SAVED

syscmd_stopbits
STOPBITS_1
STOPBITS_2

syscmd_usedrawcache
DRAWCACHE_ON
DRAWCACHE_OFF

syscmd_usepassword
USEPASSWORD_OFF
USEPASSWORD_ON

typeval

INTEGER_TYPE
FLOAT_TYPE
BOOLEAN_TYPE
BYTE_TYPE
UNIBYTE_TYPE
ARRAY_TYPE
OBJREF_TYPE

volume_adjust
VOLUME_LOUDER
VOLUME_QUIETER

weekday

SUNDAY
MONDAY
TUESDAY
WEDNESDAY
THURSDAY
FRIDAY
SATURDAY

Defined Type Values
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 101
A.2 Tool Types

A.3 Colors

A.4 Key Codes

Defined Type Values

GuiCursors

CSR_ALL
CSR_UPDOWN
CSR_LEFTRIGHT
CSR_UPLEFT
CSR_UPRIGHT
CSR_NONE
CSR_DOWNRIGHT
CSR_DOWNLEFT
CSR_BLOCK
CSR_SELECT
CSR_DELETE
CSR_PLUS
CSR_NOLINETO
CSR_OBJECTFIXED

Colors

RGB_BLACK RGB_BLUE

RGB_BROWN RGB_BURNTORANGE

RGB_CYAN RGB_DKBROWN

RGB_DKGRAY RGB_DKSTEELGRAY

RGB_FORESTGREEN RGB_GRAY

RGB_GREEN RGB_KELLYGREEN

RGB_LTBROWN RGB_MAGENTA

RGB_MAROON RGB_MIDNIGHTBLUE

RGB_MOSSGREEN RGB_NAVY

RGB_ORANGE RGB_PURPLE

RGB_RED RGB_STEELGRAY

RGB_VIOLET RGB_WARMGRAY

RGB_WHITE RGB_YELLOW

COL_0 through COL_255

Key Codes

KEY_ANY

KEY_NONE

KEY_KEYPAD

KEY_CAPS_LOCK

KEY_NUM_LOCK

KEY_SCROLL_LOCK

KEY_SHIFT

KEY_CTRL

KEY_ALT

KEY_SPECIAL

KEY_ASCII_MASK

KEY_SPACE

KEY_BACKSPACE

KEY_TAB

KEY_UPARROW

KEY_DOWNARROW

KEY_LEFTARROW

KEY_RIGHTARROW

KEY_ENTER

KEY_ESCAPE

KEY_DELETE

KEY_INSERT

KEY_HOME

KEY_END

KEY_PAGEUP

KEY_PAGEDOWN

KEY_NUMPAD_5

KEY_PRINTSCREEN

KEY_PAUSE

KEY_OS

KEY_MENU

KEY_F1
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

102 OptoTerminal Programmer’s Reference Manual
KEY_F2

KEY_F3

KEY_F4

KEY_F5

KEY_F6

KEY_F7

KEY_F8

KEY_F9

KEY_F10

KEY_F11

KEY_F12

KEY_EXCLAMATION

KEY_QUOTE

KEY_POUND

KEY_DOLLAR

KEY_PERCENT

KEY_AMPERSTAND

KEY_APOSTROPHE

KEY_OPEN_PAREN

KEY_CLOSE_PAREN

KEY_ASTERISK

KEY_PLUS

KEY_COMMA

KEY_HYPHEN

KEY_PERIOD

KEY_SLASH

KEY_0

KEY_1

KEY_2

KEY_3

KEY_4

KEY_5

KEY_6

Key Codes

KEY_7

KEY_8

KEY_9

KEY_COLON

KEY_SEMICOLON

KEY_LESS_THAN

KEY_EQUALS

KEY_GREATER_THAN

KEY_QUESTION

KEY_AT

KEY_A

KEY_B

KEY_C

KEY_D

KEY_E

KEY_F

KEY_G

KEY_H

KEY_I

KEY_J

KEY_K

KEY_L

KEY_M

KEY_N

KEY_O

KEY_P

KEY_Q

KEY_R

KEY_S

KEY_T

KEY_U

KEY_V

KEY_W

Key Codes
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 103
KEY_X

KEY_Y

KEY_Z

KEY_OPEN_BRACKET

KEY_BACKSLASH

KEY_CLOSE_BRACKET

KEY_CARET

KEY_UNDERSCORE

KEY_GRAVE

KEY_LCASE_A

KEY_LCASE_B

KEY_LCASE_C

KEY_LCASE_D

KEY_LCASE_E

KEY_LCASE_F

KEY_LCASE_G

KEY_LCASE_H

KEY_LCASE_I

KEY_LCASE_J

KEY_LCASE_K

Key Codes

KEY_LCASE_L

KEY_LCASE_M

KEY_LCASE_N

KEY_LCASE_O

KEY_LCASE_P

KEY_LCASE_Q

KEY_LCASE_R

KEY_LCASE_S

KEY_LCASE_T

KEY_LCASE_U

KEY_LCASE_V

KEY_LCASE_W

KEY_LCASE_X

KEY_LCASE_Y

KEY_LCASE_Z

KEY_OPEN_BRACE

KEY_PIPE

KEY_CLOSE_BRACE

KEY_TILDE

Key Codes
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

104 OptoTerminal Programmer’s Reference Manual
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

APPENDIX B

EXCEPTION LIST

This appendix lists the names and associated descriptions of
all possible exceptions. All non-fatal exception names begin
with the prefix EXCEPT_.

B.1 Special Exceptions

B.2 Memory Exceptions

B.3 Message System Exceptions

B.4 Font Exceptions

B.5 Drawing Exceptions

EXCEPT_NONE No String

EXCEPT_USER No String

EXCEPT_NOMEM “Unable to allocate memory”

EXCEPT_NODCMEM
“Draw cache memory exhausted
- reducing level”

EXCEPT_NOPOST
“Unable to post message -
queue is full”

EXCEPT_NOSYSMSG
“Unable to initiate a system
message”

EXCEPT_BADREGMSG “Not a registerable message”

EXCEPT_NOMODEVERT
“Vertical text unsupported
by font”

EXCEPT_NOMODEHORZ
“Horizontal text unsup-
ported by font”

EXCEPT_GLYPHRETR
“Unable to retrieve TTF
glyph”

EXCEPT_GLYPHTRANS
“Unable to transform TTF
glyph”

EXCEPT_GLYPHBMP
“Unable to render TTF
glyph”

EXCEPT_CLOSEFACE
“Unable to release TTF
face”

EXCEPT_OPENFACE
“Unable to initialize
requested TTF face”

EXCEPT_MISSCMAP
“No appropriate TTF char-
acter map”

EXCEPT_CHANGEPT
“Unable to set requested
TTF point size”

EXCEPT_GLYPHCOPY
“Unable to copy TTF
glyph”

EXCEPT_NOSCALABLE “TTF not scalable”

EXCEPT_NOSPACE
“Text does not fit as speci-
fied in area”

EXCEPT_NOTDRAWING
“Unable to perform while
not drawing”

EXCEPT_DRAWING
“Unable to perform while
drawing”

EXCEPT_CORRUPT_BMP “Corrupted bitmap”

EXCEPT_UNSUP_BMP “Unsupported bitmap”

EXCEPT_NONDRAWN_OBJ “Object is non-drawable”

EXCEPT_ROOT_OBJ
“Unable to change root
container information”

EXCEPT_FOCALDIST
“Illegal focal distance/
edge distance ratio”

EXCEPT_NOSTARTPT
“Unable to find ellipse
start point”

EXCEPT_NOENDPT
“Unable to find ellipse
end point”

EXCEPT_SCANFILLERROR
“Scanfill of area unsuc-
cessful”

EXCEPT_MISMATCHPTS
“Mismatch in number of
points”

EXCEPT_NOGETPIXMAP
“Unable to capture chil-
dren in object pixel map”
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

106 OptoTerminal Programmer’s Reference Manual
B.6 Array Exceptions

B.7 Z-Order Exceptions

B.8 Miscellaneous Exceptions

B.9 Communications/Networking Exceptions

EXCEPT_ARR_NOREDIM
“Particular array is not
redimmable”

EXCEPT_NOARRSUPPORT
“No support for action on
array”

EXCEPT_ARRINDEX
”Illegal index into an
array”

EXCEPT_NOATTACHABLE
“Impossible attach-
ment request”

EXCEPT_NOZACTION
“Unable to queue up
Z-order change”

EXCEPT_OBJNOTCONTAINER
“Object is not con-
tainer”

EXCEPT_INVAL_SIZE “Invalid size”

EXCEPT_PLAYNOTE “Unable to play note”

EXCEPT_BADPERSIST
“Unable to persist a non-
variable”

EXCEPT_BADLEDNUM “Invalid LED number”

EXCEPT_NORETHROW
“No exception to
rethrow”

EXCEPT_NOFINDOBJ
“Unable to find object by
name”

EXCEPT_NOFINDPROP
“Unable to find property
by name”

EXCEPT_NOVARSTRING
“Unable to stringify
given variable”

EXCEPT_BADPROPVAL
“Illegal value given by
string”

EXCEPT_INVAL_OBJREF
“Invalid objref (possibly
empty?)”

EXCEPT_BADSET
“Attempt to set non-set-
able variable”

EXCEPT_HWARE_UNAVAIL “Hardware unavailable”

EXCEPT_BAD_FORMAT “Bad format string”

EXCEPT_BADVALUE
“Value is not within
expected range”

EXCEPT_BAD_ARRSIZE
“Array has incorrect
size”

EXCEPT_MISSING_ENTER
“No enter key specified
in password”

EXCEPT_HWARE_INUSE
“Hardware currently in
use”

EXCEPT_INVAL_TYPE “Invalid type”

EXCEPT_INVAL_HANDLE “Invalid array handle”

EXCEPT_INVAL_ARROP “Invalid array operation”

EXCEPT_DATA_CORRUPT “Corrupted data”

EXCEPT_ZLIBFAULT “ZLib library error”

EXCEPT_ZLIB_ADLER
“Missing or partial adler
for compressed data”

EXCEPT_TFT_CONTRAST
“TFT displays do not
support a contrast value”

EXCEPT_NOCHANNEL
“Transmission channel
not setup”

EXCEPT_NOFREECHANNEL
“No free transmission
channel”

EXCEPT_CHANNELUSED
“Transmission channel
is in use”

EXCEPT_SEND “Transmission error”

EXCEPT_BADIP “Bad IP address”

EXCEPT_NOTALLOWED “Permission Denied”

EXCEPT_BADSERIAL
“Bad serial port identi-
fier”

EXCEPT_BADSERIALSET
“Unable to set serial
port”

EXCEPT_UNSUP_ON_PORT
“Not supported for this
serial port”
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 107
B.10 Math Exceptions

B.11 Flash Write Exceptions

B.12 File System Exceptions

EXCEPT_NOT_COMM
“Current message is not
communications
related”

EXCEPT_SERVER_COMM
“Cannot transmit on
server comm resource”

EXCEPT_TCPSETUPFAIL
“Cannot open the
requested TCP connec-
tion”

EXCEPT_NO_UDP_SUPPORT
“UDP protocol does not
support this feature”

EXCEPT_INVAL_COM
“Invalid comm
resource”

EXCEPT_BADPORT “Bad port number”

EXCEPT_TCPRESET “TCP connection reset”

EXCEPT_TCPREFUSED
“TCP connection
refused”

EXCEPT_TCPTOOBIG
“TCP transmission
buffer overflow”

EXCEPT_TCPTIMEOUT
“TCP transmission
timed out”

EXCEPT_BADARCMATH “Illegal arc function value”

EXCEPT_BADLOG “Illegal log function value”

EXCEPT_BADSQRT
“Illegal sqrt function
value”

EXCEPT_DIVBYZERO “Division by zero”

EXCEPT_NOBYTES
“No byte representation for
given type”

EXCEPT_BADBYTES
“Bad byte representation
for given type”

EXCEPT_DOMAINERROR
“Math function domain
error”

EXCEPT_PBLK_TOO_BIG “Block is too large”

EXCEPT_FLASHMEMORIZE
“Unable to place neces-
sary routine in RAM”

EXCEPT_FLASHERASE
“Error occurred erasing
block”

EXCEPT_FLASHWRITE
“Error occurred writing
to flash”

EXCEPT_FLASHBADVERIFY
“Verification of written
data to flash failed”

EXCEPT_FLASHBADREAD “Unable to read flash”

EXCEPT_FFSNOSPACE
“Not enough space
left in file system”

EXCEPT_FFSNOEXIST “File does not exist”

EXCEPT_FFSNODELROOT
“Unable to delete root
directory”

EXCEPT_FFSBADFD
“File resource num-
ber is invalid”

EXCEPT_FFSENDOFFILE
“End of file reached
without sufficient
data”

EXCEPT_FFSALREADYOPEN “File is already open”

EXCEPT_FFSTOOMANYOPEN
“Too many open
files”

EXCEPT_FFSBADOPEN
“Unable to open file
as indicated”

EXCEPT_FFSDUPNAME
“File with given name
already exists”

EXCEPT_FFSBADOP
“File not set up to
allow requested oper-
ation”

EXCEPT_FFSPATHNOTFOUND “Path not found”

EXCEPT_FFSBADNAME
“Illegal name speci-
fied”

EXCEPT_FFSTOOLONG
“Path or name too
long”

EXCEPT_FFSDELOPEN
“Unable to delete
open file”

EXCEPT_FFSNOINIT
“File system not
inited (perhaps low on
space)”
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

108 OptoTerminal Programmer’s Reference Manual
B.13 Compiler Error Exceptions
The following are fatal system exceptions. These exceptions
typically cause the system to stop processing after the
description string is transmitted to the primary serial port.

B.14 Fatal Memory Exceptions

B.15 Fatal Flash Exceptions

EXCEPT_FFSBADDIR
“Indicated file not
directory”

EXCEPT_FFSBADOFFSET “Invalid offset”

EXCEPT_FFSNOOVERWRITE
“No overwrite sup-
port for given mode”

EXCEPT_NOREAD
“Unable to read item
of given type”

EXCEPT_NOWRITE
“Unable to write item
of given type”

EXCEPT_FFSCORRUPT
“Corrupt file system
detected”

EXCEPT_FFSBADMOVE
“Illegal rename
requested”

EXCEPT_MISALIGNED
“Data misalignment
problem”

EXCEPT_PARMERR “Parameter error”

EXCEPT_BADFONTNUM
“Non-existent font
reference”

EXCEPT_BADBMPNUM
“Non-existent bitmap
reference”

EXCEPT_TYPEMISMATCH “Incorrect types”

EXCEPT_BADOPCODE
“Illegal instruction
opcode”

EXCEPT_BADDEREFTYPE
“Unable to derefer-
ence item”

EXCEPT_BADMATHOP
“Invalid operation for
given type”

EXCEPT_BADPROMTYPE
“Unable to promote to
desired type”

EXCEPT_STACKPOPPED
“Interpreter stack dec-
imated”

EXCEPT_BLOWNSTACK
“Interpreter stack
blown”

EXCEPT_STACKNOTEMPTY
“Returning with inter-
preter stack not
empty”

EXCEPT_XCPTSTACKPOPPED
“Exception stack deci-
mated”

EXCEPT_XCPTSTACKMORE
“Returning with
exception stack not
empty”

EXCEPT_BADAPI
“Attempting to call a
non-existent API
function”

EXCEPT_BADSNDNUM
“Non-existent sound
reference”

EXCEPT_INVALRES “Invalid resource”

EXCEPT_BADBASEFUNC
“Invalid call to default
function”

FERR_NOMEM
“Unable to allocate mem-
ory”

FERR_NO_STACK_MEM
“Unable to allocate memory
on stack”

FERR_HEAPPTR “Invalid heap pointer found”

FERR_HEAPCORRUPT “Heap corruption detected”

FERR_FLASHWRITE “Error writing to flash”

FERR_FLASH “Flash programming error”

FERR_NODEFRAG
“Missing required defragmen-
tation area”

FERR_FFSCORRUPT
“Corrupted flash file system
detected”

FERR_BADFFSSTART
“Current flash file system start
is invalid”

FERR_BADSECNUM “Bad sector number”

FERR_BADFFSWRITE “Illegal write attempted”
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 109
B.16 Fatal Initialization Exceptions

B.17 Fatal Message System Exceptions

B.18 Network Fatal Exceptions

B.19 Miscellaneous Fatal Exceptions

B.20 Fatal Qlarity Foundry Exceptions

FERR_FFSCANTSETUP
“Unable to setup flash file
system”

FERR_FLASHREAD “Error reading from flash”

FERR_FLASHERASE “Error erasing flash”

FERR_GONEHWAREFIG
“Missing hardware con-
figuration - contact QSI”

FERR_HAVE_PREV_BFF “Previous BFF not freed”

FERR_NO_PREV_BFF “No BFF to be freed”

FERR_BAD_BFF “BFF bad or missing”

FERR_BAD_OBJVERSION
“Incompatible instance
and template versions”

FERR_TTFENGINE_DEAD
“TTF engine failed to
start”

FERR_TTFENGINE_NODIE
“TTF engine failed to ter-
minate”

FERR_TASKSTART
“Unable to start required
task”

FERR_MSGSYSSTART
“Unable to start messag-
ing system”

FERR_FFSSTART
“Unable to start flash file
system”

FERR_FONTERR
“Unable to use built in
font”

FERR_DECOMPRESS “Decompression error”

FERR_NATIVEOBJECT
“Native objects not supor-
ted”

FERR_BADINIT “Initialization error”

FERR_BADINITPOST “Unable to post MSG_INIT”

FERR_BADSEMCOUNT
“Unexpected message queue
error”

FERR_BADMESSAGE
“Unknown message in mes-
sage queue”

FERR_MSGQSTALLED “Message queue has stalled”

EXCEPT_OUTOFBUF “Out of network packet buffers”

FERR_MAXEXCEPT “Too many exceptions”

FERR_POSTWINMSG
“Unable to post Windows mes-
sage”

FERR_WINSYNC
“Unable to synchronize to
design tool”

FERR_NOFINDOBJ
“Unable to find object given by
design tool”

FERR_BADGUI “Illegal design tool request”

FERR_SOFTTERM
“Executing soft termination
request”

FERR_APIRESET
“Application requested soft ter-
mination”

FERR_FAILEDREINIT “Failed to re-init object”
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

110 OptoTerminal Programmer’s Reference Manual
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

APPENDIX C

QLARITY COMMAND LINE COMPILER

You can use the Qlarity compiler to compile your BASIC
file rather than using Qlarity Foundry to compile it. This is
useful if you created your user application in a text editor.

The compiler looks for a file called natives.lib. This file
contains information message prototypes and functions for
the API. This file must be in the same directory as the com-
piler or the program cannot be compiled.

NOTE:
The command line compiler is available as a Win32 or
Linux executable file. The Win32 compiler is distributed
with Qlarity Foundry. Contact QSI to obtain the Linux com-
piler. Please be aware that the Linux compiler is often in
flux and may only be available as a snapshot of current
Qlarity developement.

To compile a Qlarity BASIC file, at the command prompt,
type the following:

qlarify <file_name>

To specify the name of the output file type, add the follow-
ing parameters:

qlarify -o <output_file_name> <file_name>

If any errors occur, they are output to the display. To output
the compiler errors to a file, type the following:

qlarify -e <error_file_name> <file_name>

To display Help on the command line syntax, type the fol-
lowing:

qlarify -h

A typical call to the compiler to compile an application in
Qlarity Foundry might look like this:

qlarify -t keypaddef! charstr -t ->
aggregate! string -s 19 -s 25 -a -o ->
<output_file_name> <file_name>

This would have the compiler define the pseudotypes key-
paddef% as a charstr and aggregate% as string. It would
suppress warnings #19 and #25 (dangerous conversion and
font definition warning), remove font encodings for Uni-
code characters from BDF fonts, and output the resultant
.bff file to <output_file_name>.

Qlarify supports the following command line switches:

-e <error_file>
Redirect error output to <error_file>. If this option is not speci-
fied all error information is sent to the display

-o <output_file>

Generate the <output_file> as the compiled Qlarity application.
If this is not specified, then output will be sent to a file with the
same name as the input file where the .qly extension (if present)
is replaced with .bff.

-c

Case sensitive. This makes the compiler case sensitive. By
default the compiler is not case sensitive. Do not use this option
with QSI provided code or libraries which assume case insensi-
tivity. This is not recommended and should only be used if you
have authored your entire application (including libraries and
object templates) from scratch.

-h, -? Print out help information

-v Print out the compiler version only. Do not compile anything
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

112 OptoTerminal Programmer’s Reference Manual
-a

Remove character encodings greater than 255 (i.e. Unicode char-
acters) from BDF fonts. This can save a lot of memory in appli-
cations that do not use Unicode. This is the default setting for
applications compiled with Qlarity Foundry.

Normally, if you use this option you will not specify -u

-u

Unicode support. Specifying this option will cause the char data
type to be 16 bits wide (like a unibyte) and characters in a charstr
to be 16 bits each. This effectively enables Unicode support.

Normally you do not use this option in conjunction with -a

-t <new_data_type> <existing_data_type>

Create a new pseudo data type name <new_data_type> with the
same attributes as <existing_data_type>. The KeypadDef% and
Aggregate% data types often used in applications developed in
Qlarity Foundry are examples of pseudo data types.

Since specifying the percent(%) character in a command line can
be difficult, you may substitute the bang (!) character wherever
you need to use a percent.

For applications developed in Qlarity Foundry, you should usu-
ally specify
-t keypaddef! charstr -t aggregate! string

-s <warning_number>

Suppress warnings with the number <warning_number>. Some
warnings may be overly repetitive and difficult to avoid. You
may wish to suppress those warnings from the output.

For applications developed in Qlarity Foundry, you should usu-
ally specify
-s 19 -s 25
which will suppress superfluous conversion warnings and BDF
font warnings

-p <option>
Defines an option as if you had used #option <option> at the
beginning of the source file.
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

APPENDIX D

QLARITY API FUNCTIONS QUICK REFERENCE LIST

This appendix provides a list of the Qlarity API functions in
alphabetical order for quick reference. The syntax for each
function’s code is also listed. For more information and a
description of each function, refer to the section and page
listed in the “Manual Reference” column.

Each API function statement is defined as a single line of
code. In the following list, when a statement wraps to the
next line, -> appears at the end of the line to indicate that
the statement is continued.

Function Syntax Reference

Acos acos(x as float) returns float section 4.11.5, page 73

AllocateArrayHandle
allocatearrayhandle(data[] as reference? to ->
anytype) returns ArrayHandle

section 4.9.12, page 70

ArrayOperation
arrayoperation (arr1[] as reference to anytype, ->
arr2[] as reference? to anytype, op as ArrayOp)

section 4.9.9, page 69

Asin asin(x as float) returns float section 4.11.4, page 73

Atan atan(x as float) returns float section 4.11.6, page 73

Attach attach(obj as objref, parent as objref) section 4.4.1, page 43

CalculateCRC

calculatecrc(table[] as reference? to integer, ->
width as integer, reflect as boolean, crcin as ->
integer, reflectout as boolean, xoronout as ->
integer, data[] as reference? to byte) returns ->
integer

section 4.18.27, page 95

ChangeCurDir changecurdir(name[] as reference? to byte) section 4.16.3, page 78

ChangePort changeport(channel as comm, newport as unibyte) section 4.1.9, page 38

CloseFile closefile(fnum as filedesc) section 4.16.9, page 80

Concat
concat(strA[] as reference? to sametype!, ->
strB[] as reference? to sametype!) returns sametype!

section 4.9.7, page 69

Cos cos(x as float) returns float section 4.11.2, page 73

CreateCRCTable
createcrctable(width as integer, poly as integer, ->
reflect as boolean) returns integer[]

section 4.18.26, page 95

DelayMS delayms(delay as integer) section 4.18.23, page 94

DrawBdfText

drawbdftext(x as integer, y as integer, width as ->
integer, height as integer, xoffset as integer, ->
yoffset as integer, font as bdffont, data[] as ->
reference? to anytype, {flags} as font_flags)

section 4.7.4, page 57
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

114 OptoTerminal Programmer’s Reference Manual
DrawBDFTextFit

drawbdftextfit(counts[] as reference? to integer, ->
multiflags[] as reference? to multiline_flags, ->
xpos[] as reference? to integer, ypos[] as ->
reference? to integer, widths[] as reference? to ->
integer, heights[] as reference? to integer, ->
xoffsets[] as reference? to integer, yoffsets[] ->
as reference? to integer, font as bdffont, data[] ->
as reference? to anytype, start as integer, ->
length as integer, flags as font_flags)

section 4.7.5, page 57

DrawBitmap
drawbitmap(x as integer, y as integer, bmp as ->
bitmap)

section 4.6.8, page 46

DrawBitmapRegion
drawbitmapregion(x as integer, y as integer, ->
xoffset as integer, yoffset as integer, width as ->
integer, height as integer, bmp as bitmap)

section 4.6.9, page 46

DrawBorder
drawborder (x1 as integer, y1 as integer, x2 as ->
integer, y2 as integer, style as integer, ->
drawFlags as unibyte)

section 4.6.21, page 52

DrawBox
drawbox(left as integer, top as integer, righ} as ->
integer, bottom as integer)

section 4.6.14, page 48

DrawEllipse

drawellipse(xoffset as integer, yoffset as ->
integer, a as float, xfocal as float, yfocal as ->
float, theta as float, gamma as float, flags as ->
ellipse_flags)

section 4.6.16, page 49

DrawLine
drawline(x1 as integer, y1 as integer, x2 as ->
integer, y2 as integer)

section 4.6.7, page 46

DrawPixmap
drawpixmap(x as integer, y as integer, pixmap[] ->
as reference? to byte, mapwidth as integer, ->
mapheight as integer)

section 4.6.11, page 47

DrawPixmapRegion

drawpixmapregion(x as integer, y as integer, ->
xoffset as integer, yoffset as integer, width as ->
integer, height as integer, pixmap[] as ->
reference? to byte, mapwidth as integer, ->
mapheight as integer)

section 4.6.12, page 47

DrawPolygon
drawpolygon(xpoints[] as integer, ypoints[] as ->
integer, flags as poly_flags)

section 4.6.15, page 48

DrawSysText

drawsystext(x as integer, y as integer, width as ->
integer, height as integer, xoffset as integer, ->
yoffset as integer, font as sysfont, facenum as ->
integer, ptsize as integer, data[] as reference? ->
to anytype, flags as font_flags)

section 4.7.14, page 63

Function Syntax Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 115
DrawSysTextFit

drawsystextfit(multiflags[] as reference? to ->
multiline_flags, xpos[] as reference? to integer, ->
ypos[] as reference? to integer, widths[] as ->
reference? to integer, heights[] as reference? to ->
integer, xoffsets[] as reference? to integer, ->
yoffsets[] as reference? to integer, indices[] as ->
reference? to integer, lengths[] as reference? to ->
integer, font as sysfont, facenum as integer, ->
ptsize as integer, data[] as reference? to ->
anytype, flags as font_flags)

section 4.7.15, page 64

DrawTTFText

drawttftext(x as integer, y as integer, width as ->
integer, height as integer, xoffset as integer, ->
yoffset as integer, font as ttfont, facenum as ->
integer, ptsize as integer, data[] as reference? ->
to anytype, {flags} as font_flags)

section 4.7.8, page 60

Enable enable(obj as objref, flag as boolean) section 4.3.4, page 41

EnableKeypadBacklight enablekeypadbacklight(enable as boolean) section 4.18.8, page 85

EndOfFile endoffile(fnum as filedesc) returns boolean section 4.16.14, page 81

EraseFile erasefile(name[] as reference? to byte) section 4.16.6, page 79

EraseFileSpace erasefilespace() section 4.16.15, page 81

Exp exp(x as float) returns float section 4.11.8, page 74

FakeKeyMsg fakekeymsg(msgtype as fake_key, keycode as UNIBYTE) section 4.12.4, page 75

FakeScreenMsg
fakescreenmsg(msgtype as fake_screen, x1 as ->
integer, y1 as integer, x2 as integer, y2 as ->
integer)

section 4.12.5, page 75

Find
find(match[] as reference? to sametype!, start as ->
integer, length as integer, pattern[] as ->
reference? to sametype!) returns integer

section 4.9.6, page 69

FreeArrayHandle freearrayhandle (handle as ArrayHandle) section 4.9.10, page 70

FromBytes
frombytes(var as reference to anytype, toset[] as ->
byte, bigendian as boolean)

section 4.10.3, page 72

GetAvailFilespace getavailfilespace() returns integer section 4.16.1, page 78

GetBdfFontMetrics

getbdffontmetrics(maxleft as reference to integer,->
maxright as reference to integer, maxup as ->
reference to integer, maxdown as reference to ->
integer, xnextline as reference to integer, ->
ynextline as reference to integer, font as ->
bdffont, flags as font_flags)

section 4.7.3, page 56

Function Syntax Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

116 OptoTerminal Programmer’s Reference Manual
GetBDFTextFit

getbdftextfit(counts[] as reference to integer, ->
multiflags[] as reference to multiline_flags, ->
xpos[] as reference to integer, ypos[] as ->
reference to integer, widths[] as reference to ->
integer, heights[] as reference to integer, ->
xoffsets[] as reference to integer, yoffsets[] as ->
reference to integer, font as bdffont, data[] as ->
reference? to sametype!, start as integer, length ->
as integer, wordbrks[] as reference? to sametype!,->
linebrks[] as reference? to sametype!, flags as ->
font_flags)

section 4.7.2, page 54

GetBdfTextSize

getbdftextsize(width as reference to integer, ->
height as reference to integer, xoffset as ->
reference to integer, yoffset as reference to ->
integer, font as bdffont, data[] as ->
reference? to anytype, flags as font_flags)

section 4.7.1, page 53

GetBinaryResource
getbinaryresource (resourceID as integer)returns ->
byte[]

section 4.18.24, page 94

GetBitmapSize
getbitmapsize(width as reference to integer, ->
height as reference to integer, bmp as bitmap)

section 4.6.13, page 48

GetBytes
getbytes(tobreak as anytype, bigendian as ->
boolean) returns byte[]

section 4.10.4, page 72

GetCapture getcapture(obj as objref) returns integer section 4.13.2, page 76

GetChildren getchildren(contobj as objref) returns objref[] section 4.3.6, page 42

GetComMessageSource getcommessagesource()returns comm section 4.1.4, page 36

GetContainer getcontainer(obj as objref) returns objref section 4.3.5, page 42

GetCurDir getcurdir() returns string section 4.16.4, page 79

GetDirEntry getdirentry(index as integer) returns string section 4.16.5, page 79

GetEllipseSize

getellipsesize(maxleft as reference to integer, ->
maxright as reference to integer, maxup as ->
reference to integer, maxdown as reference to ->
integer, a as float, xfocal as float, {yfocal} ->
as float, theta as float, gamma as float, flags ->
as ellipse_flags)

section 4.6.17, page 50

GetEnableInfo
getenableinfo(obj as objref, eval as enable_info) ->
returns boolean

section 4.3.7, page 42

GetException
getexception(msg[] as reference to byte, errtype ->
as reference to unibyte, errlevel as reference to ->
unibyte) returns boolean

section 4.14.2, page 77

GetFileInfo
getfileinfo(name[] as reference? to byte, size as ->
reference to integer, usedfilespace as reference ->
to integer, {flags} as reference to fileinfo_flags)

section 4.16.7, page 79

GetFilePos getfilepos(fnum as filedesc) returns integer section 4.16.13, page 81

GetHardwareInfo gethardwareinfo(req} as hwinfo returns byte[] section 4.18.5, page 83

Function Syntax Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 117
GetNetChannelInfo

getnetchannelinfo(channel as comm, prot as ->
reference to netprotocol, 1port as reference to ->
unibyte, fport as reference to unibyte, ipaddr[] ->
as reference to byte)

section 4.1.11, page 38

GetObjPixmap
getobjpixmap(width as reference to integer, height->
as reference to integer) returns color[]

section 4.6.10, page 47

GetObjPixmapRegion
getobjpixmapregion(x as integer, y as integer, ->
width as integer, height as integer)

section 4.6.22, page 52

GetObjProp
getobjprop(obj as objref, name[] as reference? to ->
byte) returns string

section 4.3.2, page 41

GetObjref
getobjref(name[] as reference? to byte) returns ->
objref

section 4.3.1, page 41

GetPosInfo
getposinfo(obj as objref, pval as position_info)->
returns integer

section 4.3.8, page 42

GetProfileTick getprofiletick() returns integer section 4.18.22, page 94

GetRandomNum getrandomnum() returns float section 4.18.17, page 93

GetScreenPixmap
getscreenpixmap(x as integer, y as integer, width ->
as integer, height as integer) returns color[]

section 4.6.18, page 51

GetSysFontCharacters
getsysfontcharacters(font as sysfont,facenum as ->
integer, bRange as unibyte, eRange as unibyte) ->
returns unibyte[]

section 4.7.10, page 61

GetSysFontMetrics

getsysfontmetrics(maxleft as reference to integer,->
maxright as reference to integer,maxup as ->
reference to integer, maxdown as reference to ->
integer, xnextline as reference to integer, ->
ynextline as reference to integer, font as ->
sysfont, facenum as integer, ptsize as integer, ->
flags as font_flags)

section 4.7.13, page 63

GetSystemSetting
getsystemsetting(cmd as syscmd, var as reference ->
to anytype, which as syscmd_readfrom)

section 4.18.15, page 92

GetSysTextFit

getsystextfit(multiflags[] as reference to ->
multiline_flags, xpos[] as reference to integer, ->
ypos[] as reference to integer, widths[] as ->
reference to integer, heights[] as reference to ->
integer, xoffsets[] as reference to integer, ->
yoffsets[] as reference to integer, indices[] as ->
reference to integer, lengths[] as reference to ->
integer, font as sysfont, facenum as integer, ->
ptsize as integer, data[] as reference? to ->
sametype!, wordbrks[] as reference? to sametype!, ->
linebrks[] as reference? to sametype!, flags as ->
font_flags)

section 4.7.12, page 62

Function Syntax Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

118 OptoTerminal Programmer’s Reference Manual
GetSysTextSize

getsystextsize(width as reference to integer, ->
height as reference to integer, xoffset as ->
reference to integer, yoffset as reference to ->
integer, font as sysfont, facenum as integer, ->
ptsize as integer, data[] as reference? to ->
anytype, flags as font_flags)

section 4.7.11, page 61

GetTemperature gettemperature() returns integer section 4.18.12, page 86

GetTime

gettime(day as reference to integer, month as ->
reference to integer, dig2year as reference to ->
integer, dotw as reference to weekday, hour as ->
reference to integer, minute as reference to ->
integer, second as reference to integer)

section 4.18.10, page 85

GetTTFFontMetrics

getttfontmetrics(maxleft as reference to integer, ->
maxright as reference to integer, maxup as ->
reference to integer, maxdown as reference to ->
integer, xnextline as reference to integer, ->
ynextline as reference to integer, font as ->
ttfont, facenum as integer, ptsize as integer, ->
flags as font_flags)

section 4.7.7, page 59

GetTTFTextSize

getttftextsize(width as reference to integer, ->
height as reference to integer, xoffset as ->
reference to integer, yoffset as reference to ->
integer, font as ttfont, facenum as integer, ->
ptsize as integer, data[] as reference? to ->
anytype, flags as font_flags)

section 4.7.6, page 59

GetVersion getversion() returns float section 4.18.4, page 83

IgnoreDrawCache ignoredrawcache(obj as objref, ignore as boolean) section 4.6.20, page 51

Left
left(arr[] as reference? to sametype!, len as ->
integer) returns sametype!

section 4.9.2, page 68

Len len(arr[] as reference? to anytype) returns integer section 4.9.1, page 68

Ln ln(x as float) returns float section 4.11.9, page 74

Lower lower(obj as objref) section 4.4.5, page 44

LowerCase lowercase(str[] as byte) returns string section 4.10.5, page 72

MakeDir makedir(name[] as reference? to byte) section 4.16.2, page 78

Mid
mid(arr[] as reference? to sametype!, index as ->
integer, len as integer) returns sametype!

section 4.9.4, page 68

NetClose netclose(channel as comm) section 4.1.7, page 37

NetSendDatagram
netsenddatagram(localport as unibyte, foreignport ->
as unibyte, ipaddr[]as reference? to byte, data[] ->
as reference? to byte)

section 4.1.19, page 40

NetServerClose netserverclose(channel as servercomm) section 4.1.8, page 37

Function Syntax Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 119
NetOpen
netopen(obj as objref, prot as netprotocol, ->
localport as unibyte, foreignport as unibyte, ->
ipaddr[] as reference? to byte)

section 4.1.5, page 36

NetServerOpen
netserveropen(obj as objref, prot as netprotocol, ->
localport as unibyte) returns servercomm

section 4.1.6, page 37

OpenFile
openfile(name[] as reference? to byte, flags as ->
file_flags) returns filedesc

section 4.16.8, page 80

PlayNote playnote(note as byte, duration as integer) section 4.8.1, page 65

PlayNoteNotify
playnotenotify (obj as objref, parm as integer, ->
note as byte, duration as integer)

section 4.8.2, page 67

PlaySound playsound (sound as audio) section 4.8.3, page 67

PlaySoundNotify
playsoundnotify (obj as objref, parm as integer, ->
sound as _audio)

section 4.8.4, page 67

Power power(x as float, exp as float) returns float section 4.11.7, page 73

Raise raise(obj as objref) section 4.4.4, page 44

ReadArrayHandle
readarrayhandle (data[] as reference to anytype, ->
handle as ArrayHandle)

section 4.9.11, page 70

Read DCD readdcd(resource as comm) returns boolean section 4.1.18, page 40

ReadDTR readdtr(resource as comm) returns boolean section 4.1.17, page 39

ReadFile
readfile(fnum as filedesc, var as reference to ->
anytype)

section 4.16.10, page 80

ReadGPIO readgpio(pins as unibyte) returns GPIO_PIN section 4.18.2, page 82

ReadRTS readrts(resource as comm) returns boolean section 4.1.15, page 39

ReadUserConfig readuserconfig(len as integer) returns byte[] section 4.15.1, page 78

Redim
redim(arr[] as reference to anytype, newsize as ->
integer)

section 4.9.8, page 69

RegisterKey registerkey(obj as objref, keycode as unibyte) section 4.2.3, page 41

RegisterMsgHandler
registermsghandler(obj as objref, msgnum as ->
message, {msgparm} as unibyte)

section 4.2.1, page 40

Relocate relocate(obj as objref, x as integer, y as integer) section 4.5.3, page 44

RemoveCapture removecapture(obj as objref) section 4.13.3, page 76

RenameFile
renamefile(name[] as reference? to byte, newname[]->
as reference? to byte)

section 4.16.16, page 81

Replace

replace(match[] as reference to sametype!,start ->
as integer, len as integer, pattern[] as ->
reference? to sametype!, newdata[] as reference? ->
to sametype!, count as integer)returns integer

section 4.9.14, page 71

Rerender rerender(obj} as objref) section 4.5.1, page 44

Function Syntax Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

120 OptoTerminal Programmer’s Reference Manual
Resize
resize(obj} as objref, width as integer, height ->
as integer)

section 4.5.2, page 44

Rethrow rethrow() section 4.14.3, page 77

ReverseFind
reversefind(match[] as reference? to sametype!, ->
start as integer, len as integer, pattern[] as ->
reference? to sametype!) returns integer

section 4.9.13, page 70

RGB
rgb(red as byte, green as byte, blue as byte) ->
returns color

section 4.6.5, page 45

Right
right(arr[] as reference? to sametype!, len as ->
integer) returns sametype!

section 4.9.3, page 68

SeedRandomNum seedrandomnum() section 4.18.18, page 93

Send send(resource as comm,data[] as anytype) section 4.1.1, page 35

SendtoBack sendtoback(obj as objref) section 4.4.3, page 43

SendtoFront sendtofront(obj as objref) section 4.4.2, page 43

SetArrayData
setarraydata(arr[] reference? to sametype!, index ->
as integer, srcdata[] as reference? to sametype!, ->
srcindex as integer, len as integer)

section 4.18.25, page 94

SetBacklight setbacklight(command as backlight_adjust) section 4.18.7, page 85

SetBgColor setbgcolor(newcolor as byte) section 4.6.4, page 45

SetBreak setbreak(resource as comm, {state} as boolean) section 4.1.3, page 35

SetCapture setcapture(obj as objref) section 4.13.1, page 76

SetContrast setcontrast(direction as contrast_adjust) section 4.18.6, page 84

SetCTS setcts(resource as comm, {outValue} as boolean section 4.1.14, page 39

SetDSR setdsr(resource as comm, outValue as boolean) section 4.1.16, page 39

SetFgColor setfgcolor(newcolor as byte) section 4.6.3, page 45

SetFilePos
setfilepos(fnum as filedesc, offset as integer, ->
absolute as boolean)

section 4.16.12, page 81

SetGPIO setgpio(pins as unibyte, action as gpio_action) section 4.18.1, page 82

SetGPIODirection setgpiodirection(pins as unibyte, input as boolean) section 4.18.3, page 83

SetLED setled(cmd as ledcmd, lednum as integer) section 4.18.9, page 85

SetObjProp
setobjprop(obj as objref, name[] as reference? to ->
byte, value[] as reference? to byte)

section 4.3.3, page 41

SetOrigin
setorigin(cont as objref, {originX} as integer, ->
originY as integer)

section 4.3.9, page 43

SetPalette
setpalette(red[] as reference? to byte, green[] ->
as reference? to byte, blue[] as reference? to byte)

section 4.18.30, page 96

SetPixel setpixel(x as integer, y as integer) section 4.6.6, page 46

SetSeedRandomNum setseedrandomnum(seed as integer) section 4.18.19, page 93

Function Syntax Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

OptoTerminal Programmer’s Reference Manual 121
SetSerialRecvSize setserialrecvsize(res as comm, newsize as integer) section 4.1.12, page 38

SetSerialTimeout setserialtimeout(res as comm, newtimeout as integer) section 4.1.13, page 39

SetSystemSetting
setsystemsetting(cmd as syscmd, newvalue as ->
anytype, action as syscmd_action)

section 4.18.14, page 87

SetTime
settime(day as integer, month as integer, ->
dig2year as integer, dotw as weekday, hour as ->
integer, minute as integer, second as integer)

section 4.18.11, page 86

SetTransparent settransparent(newcolor as byte) section 4.6.1, page 45

SetTTFAngle setttfangle(theta as float) section 4.7.9, page 60

SetVolume setvolume(direction as volume_adjust) section 4.8.6, page 67

Sin sin(x as float) returns float section 4.11.1, page 73

SoftReset softreset(rst as rstmode) section 4.18.16, page 93

Sqrt sqrt(x as float) returns float section 4.11.10, page 74

StopSpkr stopspkr() section 4.8.5, page 67

Str str(value as reference? to anytype) returns string section 4.10.1, page 71

Tan tan(x as float) returns float section 4.11.3, page 73

Throw
throw(loc[] as reference? to byte, msg[] as ->
reference? to byte)

section 4.14.1, page 77

Tool_Persist tool_persist(x as reference to anytype) section 4.17.1, page 82

Tool_Trace tool_trace(str as string) section 4.17.2, page 82

Transmit
transmit(resource as comm, data[] as reference? ->
to anytype, block as boolean)

section 4.1.2, page 35

TransmitUrgent
transmiturgent(channel as comm, data[] as ->
reference? to anytype)

section 4.1.10, page 38

Trim trim(arr[] as reference? to byte) returns string section 4.9.5, page 68

TypeOf
typeof(unique as reference to integer, obj as ->
objref, name[] as reference? to byte) returns ->
typeval

section 4.18.13, page 86

UnregisterMsgHandler
unregistermsghandler(obj as objref, msgnum as ->
message, msgparm as unibyte)

section 4.2.2, page 40

UpperCase uppercase(str[] as byte) returns string section 4.10.6, page 73

UseDrawCache usedrawcache(useit as boolean) section 4.6.19, page 51

UseTransparent usetransparent(flag as boolean) section 4.6.2, page 45

UserBroadcastMsg
userbroadcastmsg(startobj as objref, msgnum as ->
message, parm as integer, donow as boolean)

section 4.12.1, page 74

UserSendMsg
usersendmsg(startobj as objref, msgnum as message,->
parm as integer, donow as boolean)

section 4.12.2, page 74

Function Syntax Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

122 OptoTerminal Programmer’s Reference Manual
UserDirectMsg
userdirectmsg(startobj as objref, msgnum as ->
message, parm as integer, donow as boolean) ->
returns boolean

section 4.12.3, page 75

Val
val(value as reference to anytype, text[] as ->
reference? to byte)

section 4.10.2, page 71

WatchdogEnable
watchdogenable(enable as boolean, timeout as ->
integer)

section 4.18.20, page 93

WatchdogReset watchdogreset() section 4.18.21, page 94

WriteFile
writefile(fnum} as filedesc, data as reference? ->
to anytype)

section 4.16.11, page 81

WriteUserConfig writeuserconfig(cfg[] as reference? to byte) section 4.15.2, page 78

ZlibCompress
zlibcompress(out[] as reference to byte, in[] as ->
reference? to byte)

section 4.18.28, page 96

ZlibDecompress
zlibdecompress(out[] as reference to byte, in[] ->
as reference? to byte)

section 4.18.29, page 96

Function Syntax Reference
Opto 22 Fax 800-832-OPTO (6786) Web www.opto22.com Phone 800-321-OPTO (6786)

	Contents
	Chapter 1 OptoTerminal Software Fundamentals
	1.1 OptoTerminal Software
	1.1.1 System Software (Firmware)
	1.1.2 User Application

	1.2 Qlarity Programming Language
	1.2.1 Object Templates
	1.2.1.1 Defining a New Object Template
	1.2.1.2 Creating Instances of an Object

	1.2.2 Object Types
	1.2.2.1 Non-Drawable Objects
	1.2.2.2 Area Objects
	1.2.2.3 Container Objects

	1.3 Event Processing
	1.4 Z-Order
	1.5 Message Handling System
	1.5.1 Broadcast Messages
	1.5.2 Area Messages
	1.5.3 Draw Messages
	1.5.4 Registered Messages
	1.5.5 User Messages
	1.5.6 Direct Messages
	1.5.7 Tool Messages
	1.5.8 Handling Events

	Chapter 2 Qlarity Language Syntax
	2.1 Qlarity Statements
	2.2 White Space
	2.3 Comments
	2.4 Naming of Identifiers
	2.5 Built-In Data Types
	2.6 User-Defined Data Types
	2.6.1 Constants
	2.6.2 Enumerations
	2.6.3 Start Type

	2.7 Variables
	2.7.1 Declaration
	2.7.2 Variable Initialization
	2.7.3 Private and Protected Variables

	2.8 Object References
	2.8.1 Untyped Object References
	2.8.2 Typed Object References
	2.8.3 Special Object References

	2.9 Arrays
	2.10 Operators
	2.10.1 Arithmetic Operators
	2.10.4 Dereference Operator
	2.10.5 Miscellaneous Operators

	2.11 Casting
	2.12 Functions
	2.12.1 Calling a Function
	2.12.2 Private, Protected, and Fixed Functions
	2.12.3 Validation Methods
	2.12.4 Array Validation Functions
	2.12.5 Array Element Validation Functions
	2.12.6 Reference Parameters

	2.13 Conditionals (if Statement)
	2.14 Looping and Leaping
	2.14.1 For/Next loops
	2.14.2 While Loops
	2.14.3 Do/While Loops
	2.14.4 Goto/Label

	2.15 Exception Handling
	2.16 Defining Objects
	2.17 Declaring Object Instances
	2.18 Level
	2.19 Including Files and Resources
	2.20 Libraries
	2.21 Precompile Directives
	2.21.1 #if/#else/#endif
	2.21.2 #option
	2.21.3 #Toolimage
	2.21.4 #Hidden
	2.21.5 #Setfile
	2.21.6 #Visible
	2.21.7 #Lock
	2.21.8 #STPBuilderApp
	2.21.9 #endfile

	Chapter 3 Messages and Message Handler Prototypes
	3.1 Broadcast Messages
	3.2 Area Messages
	3.3 Draw Messages
	3.4 Registered Messages
	3.5 User Messages
	3.5.1 Defining User Messages
	3.5.2 Sending User Messages
	3.5.3 Handlers for User Messages

	3.6 Direct Messages
	3.7 Tool Messages
	3.8 Special Messages

	Chapter 4 Qlarity API Function Reference
	4.1 Communications Interface
	4.1.1 Send
	4.1.2 Transmit
	4.1.3 SetBreak
	4.1.4 GetComMessageSource
	4.1.5 NetOpen
	4.1.6 NetServerOpen
	4.1.7 NetClose
	4.1.8 NetServerClose
	4.1.9 ChangePort
	4.1.10 TransmitUrgent
	4.1.11 GetNetChannelInfo
	4.1.12 SetSerialRecvSize
	4.1.13 SetSerialTimeout
	4.1.14 SetCTS
	4.1.15 ReadRTS
	4.1.16 SetDSR
	4.1.17 ReadDTR
	4.1.18 Read DCD
	4.1.19 NetSendDatagram

	4.2 Registering for Messages
	4.2.1 RegisterMsgHandler
	4.2.2 UnregisterMsgHandler
	4.2.3 RegisterKey

	4.3 Manipulating Objects
	4.3.1 GetObjref
	4.3.2 GetObjProp
	4.3.3 SetObjProp
	4.3.4 Enable
	4.3.5 GetContainer
	4.3.6 GetChildren
	4.3.7 GetEnableInfo
	4.3.8 GetPosInfo
	4.3.9 SetOrigin

	4.4 Manipulating Z-Order
	4.4.1 Attach
	4.4.2 SendtoFront
	4.4.3 SendtoBack
	4.4.4 Raise
	4.4.5 Lower

	4.5 Redrawing Portions of the Display
	4.5.1 Rerender
	4.5.2 Resize
	4.5.3 Relocate

	4.6 Painting to the Display
	4.6.1 SetTransparent
	4.6.2 UseTransparent
	4.6.3 SetFgColor
	4.6.4 SetBgColor
	4.6.5 RGB
	4.6.6 SetPixel
	4.6.7 DrawLine
	4.6.8 DrawBitmap
	4.6.9 DrawBitmapRegion
	4.6.10 GetObjPixmap
	4.6.11 DrawPixmap
	4.6.12 DrawPixmapRegion
	4.6.13 GetBitmapSize
	4.6.14 DrawBox
	4.6.15 DrawPolygon
	4.6.16 DrawEllipse
	4.6.17 GetEllipseSize
	4.6.18 GetScreenPixmap
	4.6.19 UseDrawCache
	4.6.20 IgnoreDrawCache
	4.6.21 DrawBorder
	4.6.22 GetObjPixmapRegion

	4.7 Rendering Text on the Display
	4.7.1 GetBdfTextSize
	4.7.2 GetBDFTextFit
	4.7.3 GetBdfFontMetrics
	4.7.4 DrawBdfText
	4.7.5 DrawBDFTextFit
	4.7.6 GetTTFTextSize
	4.7.7 GetTTFFontMetrics
	4.7.8 DrawTTFText
	4.7.9 SetTTFAngle
	4.7.10 GetSysFontCharacters
	4.7.11 GetSysTextSize
	4.7.12 GetSysTextFit
	4.7.13 GetSysFontMetrics
	4.7.14 DrawSysText
	4.7.15 DrawSysTextFit

	4.8 Controlling the Speaker
	4.8.1 PlayNote
	4.8.2 PlayNoteNotify
	4.8.3 PlaySound
	4.8.4 PlaySoundNotify
	4.8.5 StopSpkr
	4.8.6 SetVolume

	4.9 Array and String Functions
	4.9.1 Len
	4.9.2 Left
	4.9.3 Right
	4.9.4 Mid
	4.9.5 Trim
	4.9.6 Find
	4.9.7 Concat
	4.9.8 Redim
	4.9.9 ArrayOperation
	4.9.10 FreeArrayHandle
	4.9.11 ReadArrayHandle
	4.9.12 AllocateArrayHandle
	4.9.13 ReverseFind
	4.9.14 Replace

	4.10 Conversion Functions
	4.10.1 Str
	4.10.2 Val
	4.10.3 FromBytes
	4.10.4 GetBytes
	4.10.5 LowerCase
	4.10.6 UpperCase

	4.11 Math Functions
	4.11.1 Sin
	4.11.2 Cos
	4.11.3 Tan
	4.11.4 Asin
	4.11.5 Acos
	4.11.6 Atan
	4.11.7 Power
	4.11.8 Exp
	4.11.9 Ln
	4.11.10 Sqrt

	4.12 User Message Functions
	4.12.1 UserBroadcastMsg
	4.12.2 UserSendMsg
	4.12.3 UserDirectMsg
	4.12.4 FakeKeyMsg
	4.12.5 FakeScreenMsg

	4.13 User Input Capture
	4.13.1 SetCapture
	4.13.2 GetCapture
	4.13.3 RemoveCapture

	4.14 Exception Functions
	4.14.1 Throw
	4.14.2 GetException
	4.14.3 Rethrow

	4.15 User Non-Volatile Configuration Functions
	4.15.1 ReadUserConfig
	4.15.2 WriteUserConfig

	4.16 File System Functions
	4.16.1 GetAvailFilespace
	4.16.2 MakeDir
	4.16.3 ChangeCurDir
	4.16.4 GetCurDir
	4.16.5 GetDirEntry
	4.16.6 EraseFile
	4.16.7 GetFileInfo
	4.16.8 OpenFile
	4.16.9 CloseFile
	4.16.10 ReadFile
	4.16.11 WriteFile
	4.16.12 SetFilePos
	4.16.13 GetFilePos
	4.16.14 EndOfFile
	4.16.15 EraseFileSpace
	4.16.16 RenameFile

	4.17 Qlarity Foundry Functions
	4.17.1 Tool_Persist
	4.17.2 Tool_Trace

	4.18 Miscellaneous Functions
	4.18.1 SetGPIO
	4.18.2 ReadGPIO
	4.18.3 SetGPIODirection
	4.18.4 GetVersion
	4.18.5 GetHardwareInfo
	4.18.6 SetContrast
	4.18.7 SetBacklight
	4.18.8 EnableKeypadBacklight
	4.18.9 SetLED
	4.18.10 GetTime
	4.18.11 SetTime
	4.18.12 GetTemperature
	4.18.13 TypeOf
	4.18.14 SetSystemSetting
	4.18.15 GetSystemSetting
	4.18.16 SoftReset
	4.18.17 GetRandomNum
	4.18.18 SeedRandomNum
	4.18.19 SetSeedRandomNum
	4.18.20 WatchdogEnable
	4.18.21 WatchdogReset
	4.18.22 GetProfileTick
	4.18.23 DelayMS
	4.18.24 GetBinaryResource
	4.18.25 SetArrayData
	4.18.26 CreateCRCTable
	4.18.27 CalculateCRC
	4.18.28 ZlibCompress
	4.18.29 ZlibDecompress
	4.18.30 SetPalette

	A.1 Constants
	A.2 Tool Types
	A.3 Colors
	A.4 Key Codes
	B.1 Special Exceptions
	B.2 Memory Exceptions
	B.3 Message System Exceptions
	B.4 Font Exceptions
	B.5 Drawing Exceptions
	B.6 Array Exceptions
	B.7 Z-Order Exceptions
	B.8 Miscellaneous Exceptions
	B.9 Communications/Networking Exceptions
	B.10 Math Exceptions
	B.11 Flash Write Exceptions
	B.12 File System Exceptions
	B.13 Compiler Error Exceptions
	B.14 Fatal Memory Exceptions
	B.15 Fatal Flash Exceptions
	B.16 Fatal Initialization Exceptions
	B.17 Fatal Message System Exceptions
	B.18 Network Fatal Exceptions
	B.19 Miscellaneous Fatal Exceptions
	B.20 Fatal Qlarity Foundry Exceptions

