Form 163.2

Technical Notes
for Older Legacy Systems

OPTO 22 - TECHNICAL NOTES

This technical document describes the features, specifications, and operations of the product.

The information in this manual has been carefully checked and is believed to be accurate; howaver, no
responsibility is assumed for possible inaccuracies or omissions. Specifications are subject to change
without notice.

OPTO 22 warrants all its products to be free from defects in material or workmanship for 24 months
from the manufacturing date code.

This warranty is limited to the original cost of the unit only and does not cover installation labor or any
other contingent costs.

Turbo BASIC, Turbo C, and Turbo Pascal are trademarks of Borland International.

IBM PC, XT, AT, and PS/2 are trademarks of International Business Machine Corporation.
IBM is a registered trademark of International Business Machine Corporation.

Microsoft BASIC is a registered trademark of Microsoft Corporation.

OPTOMUX and OPTOWARE are trademarks of OPTO 22,

mistic is a registered trademark of OPTO 22.

OPTO 22 - TECHNICAL NOTES

Enclosed are the following Technical Notes from OPTO 22. This will assist you in using OPTO 22
hardware and software with non-OPTO 22 products. If you have any questions, please call Technical
Support at 714-695-9299 or 800-321-OPTO.

163-01 ..
163-02 ..
163-03 ...
16304 ...
163-05 ...
163-06 ...
163-07 .
163-08 .
163-00 ..
163-10 ..
163-11 ...
163-12 ..

16313 ...

. Digital To Analog Timing Requirements, Etc.

. BCD To Decimal And Decimal To BCD Conversions

Configuring The IBM PC/XT/AT, P3/2, Or Compatibles’ Serial Ports
Using The OPTOWARE Driver With Borland International's Turbo BASIC
Using The OPTOWARE Driver With Borland International’s Turbo C

Using The OPTOWARE Driver With Borland International’'s Turbo Pascal 3.0/4.0

. . Using The OPTOWARE Driver With Microsoft's Quick BASIC 2.0/3.0/4.0
. Using The OPTOWARE Driver With Microsoft's C 4.0/5.0
. Assembly Language Programming For The LC2

. Assembly Language Programming For The LC4

LC4/OPTOMUX Network Interface

. Using OPTO 22's Utility Programs

Using The OPTOWARE Driver With Borland’s Turbo C++

OPTO 22 - TECHNICAL NOTES

OPTO 22 - TECHNICAL NOTES #163-01

This technical note describes how to use the OPTO 22 analog modules on a custom mother board
instead of an OPTO 22 Analog I/O Mounting Rack.

Digital to Analog (Output) Module
Timing Requirements

All of the OPTO D/A modules are 12 bit serial devices. The DA modules have two 5 VDC digital input
lines, the STROBE input on pin 10 and the DATA input on pin 8. The 12 bits of serial data are loaded
with the most significant bit (MSB) first. The data is positive true logic and clocked in on the low to high
(positive edge) transition of the strobe. The DAC module will output the last 12 bits of data that are
clocked in.

The driving device must be capable of sinking eight milliamperes while maintaining 0.4 volts or less at its
output. Typical driving devices are Motorola 6821 (PIA), Intel 8255A (PPl), standard TTL, and LS gates.
The inputs require negligible current while they are high.

There are timing requirements that must be kept in mind when loading data into the D/A modules as
follows:

STROBE:

The data is clocked in on the low to high transition of the strobe. The strobe must be low for six
microseconds minimum before it can go high. After the strobe goes high it must remain high for 30
microseconds minimum and 100 microseconds maximum while clocking in the data. [t will take 438
microseconds minimum 1o load all 12 bits of data.

DATA:

The data must be present eight microseconds minimum before the clock goes high and last 20
microseconds minimum.

Loading a ZERC Loading a ONE
STROBE f——————— 40 uSec min./100 uSec max.
—_— l—— 6 uSec min.
— —~— 8 uSec min. 8 uSec min. E—— et
—w I~— 12 uSec min.

DATA

—— 20 u3Sec min, —=

NOTE: Typical driving devices include Motorola 6821 (P1A), Intel 8255A (PFI),
Standard TTL and LS Gates.

Rev. 5 OPTO 22 - 43044 Business Park Dr., Temecula CA 92580-3665 Page 1
714-695-9209

#163-01 OPTO 22 - TECHNICAL NOTES

Analog Module Pin Out Description

The following table contains the descriptions of each of the pins on an analog module. Pin one is the
pin closest to the terminal barrier strip of the analeg /O mounting rack. Each module may or may not
use all of the pins.

PIN DESCRIPTION

Uppet B Barrier Strip

Upper A Barrier Strip

Analog Supply Common

- 15 VDC Analog Supply

+ 15 VDC Analog Supply

- 5.000 VDC Reference +/- 1 mV

+ 5 VDC Logic Supply

DATA Line

Logic Supply Ground

STROBE/CLOCK Line {D/A Modules only)

COONO O HWN

—

/" 4-40 SCREW

L

SIDE VIEW 2.00

I w rgutood
60 042 DIAMETER

-

BOTTOM VIEW { 1ooooooooooo]

e

Analog To Digital (Input) Module Specifications

The A/D modules convert the field input value to a serial pulse train. The frequency range is from 1920
Hz (zero scale) to 9600 Hz (full scale). Each positive pulse has an on-time of 30 microseconds typical.
The off-time equals the period minus the on-time. This pulse train appears on the DATA line located at
pin 8 of the module. The pulse train is continuous and referenced to the Logic Supply Ground line at
pin 9. The Analeg Supply Common is separate from the Logic Supply Ground. All modules are
optically isolated from field side fo logic side. The "T" modules (AD3T, ADSBT, elc.) are also transformer
isolated, providing isolation between the analog supply and the analog input. Some modules have
terminal screws on the top of the module, these screws should be used for field connections instead of,
or in addition to, the terminal screws on the mounting rack.

Page 2 OPTO 22 - 423044 Business Park Dr., Temecula CA 92590-3665 Rev. 5
714-695-9209

OPTO 22 - TECHNICAL NOTES #163-02

BCD-TO-DECIMAL CONVERSIONS

Since the PB16J and PB16K input racks are ideal for interfacing to thumbwheel switches or encoder
outputs, BCD-to-Decimal conversion routines are needed for proper interpretation of the data. This type
of conversion can be done using the BASIC programming language.

If you are using the OPTOWARE driver to access an OPTOMUX brain board connected to a PB16J or
PB16K rack, then you should use OPTOWARE driver command 64 fo read the data, Command 64 is a
Binary Read command which returns a 16-bit integer value (representing all the inputs on the rack}, in
the INFO%(0) variable.

Once that data is in the INFO%(0) variable, the following routine will convert that BCD value to a
decimal value and place the result in the variable named VALUE%.

This routine assumes that the least significant bit is at position 0 and the most significant bit is at
position 15. If the input is negative true logic, you will need to XOR INFO%(0) with a minus cne
(INFO%(0) = INFO%({0} XOR -1).

1000 °*~ *

1010 7

1020 ° BCD TO DECIMAL CONVERSION

1030 °

1040 ° INPUT: INFO%(0) OUTPUT: VALUE%

1050 °

1060 '~ *

1070 V1% = INFO%(0) AND 15 *Convert first digit
1080 V2% = ({(INFO%(0) AND 240} \ 16) * 10 'Convert second digit
1090 V3% = ((INFO%{0) AND 3840) \256) * 100 'Convert third digit
1100 V4% = {{INFO%{0) AND &HF000) \ 4096) * 1000 ’Convert fourth digit
1110 IF V4% < 0 THEN V4% - V4% + 16000 *Correct upper bit
1120 VALUE% = V1% + V2% + V3% + V4% "Make it one value

1130 RETURN

Rev. 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 1
714-695-9299

#1463-02

OPTO 22 - TECHNICAL NOTES

DECIMAL-TO-BCD CONVERSIONS

The PB16L rack is ideal for writing to BCD devices such as 7-segment displays. Use the OPTOWARE
command 65 to write the value to an OPTOMUX brain board connected to a PB16L output rack. This
command will take a 16-bit integer value in the INFO%(0) variable and write it to all 16 positions.
Position 0 corresponds to the least significant bit of the value in INFO%(0). Position 15 corresponds to
the most significant bit of the 16-bit value in INFO%/(0).

Since the BCD device expects the data in BCD format, the following routine converts a decimal value in
variable VALUE% to the BCD equivalent and puts the result in the variable INFO%(0).

2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140

" *

! DECIMAL TO BCD CONVERSION

INPUT: VALUE% OUTPUT: INFO%({0)

R% = VALUE% MOD 1000

V1% = VALUE% \ 1000

V2% = R% | 100

R% = R% MOD 100

V3% = R% | 10

V4% = R% MOD 10

INFO%(0) = V4% OR (V3%*16) OR (V2%*256) OR (V1%*4096)
RETURN

NOTE: Depending on how the BCD devices are connected, you may need to invert the bits on outputs
(Output &HFFFF to display 0000). This can be accomplished by using the NOT statement

INFO%{0) = NOT INFO%(0)).

Page 2

OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-3665 Rev, 2
714-605-9299

OPTO 22 - TECHNICAL NOTES 163-03

CONFIGURING THE IBM PC SERIAL PORT

The IBM PC and many compatibles use an 8250 UART device for serial communications. The DOS
operating system and many of the programming languages use calls to the BIOS to configure the serial
port. However, the BIOS will only accept baud rates of 9600 or less. This is generally because reliable

communications cannot be maintained by the inefficient BIOS routines for transmitting and receiving
characters.

The OPTOWARE driver accesses the 8250 UART directly for transferring characters, therefore allowing
higher baud rates to be used. Since the OPTOWARE driver does not do any initialization for the baud
rate, the 8250 UART must be initialized prior to calling the driver.

The 8250 UART Registers

The 8250 UART device contains several registers which specify which baud rate and type of protocol to
use. The program listings which follow this section use variables for the values to be written to the
registers. These variables can be set to values which would provide the desired baud rates or
protocols. The following tables specify the range of values that can be used.

PORT BASE Variable Interrupt Jumper
COM1 3F8 Hex COM1 (IRQ4)
COM2 2F8 Hex COM2 (IRQ3)
COM3 348 Hex IRG2

COM4 340 Hex IRQS

BAUDRATE DLH DLL Variables

38400 00 03
19200 00 08
9600 0o 0C Hex
4800 0o 18 Hex
2400 00 30 Hex
1200 00 60 Hex
300 01 80 Hex
Hev. 3 CPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 1

714-695-9208

163-03 OPTO 22 - TECHNICAL NOTES

PROTOCOL
Data Parity Stop DLAB Variable

8 NONE 1 03

8 EVEN 1 1B Hex
8 oDD 1 0B Hex
8 NONE 2 07

8 EVEN 2 1F Hex
8 oDD 2 OF Hex
7 NONE 1 02

7 EVEN 1 1A Hex
7 ODD 1 0OA Hex
7 NONE 2 06 Hex
7 EVEN 2 1E Hex
7 oDD 2 0E Hex

To set the baud rate on the 8250, a value of 80 Hex must first be written to the register at location
BASE+3. The DLL value can then be written to the register at location BASE, and the DLH value can
be written fo the register at location BASE+1. Once these values have been written, the DLAB value
can be written to the register at location BASE+3. Finally, a value of 2 Is written to the register at
location BASE+4.

For more detailed information on the registers of the 8250 UART, please refer to the IBM PC Technical
Reference Manual #6025005,

NOTE: The IBM AT, PS/2, and many non-PC/XT compatibles use a different UART (16450 or 16550), however, they are
functionally similar for this application.

Program Examples:

Turbo PASCAL Example

Procedure SetPort;
const

BASE = $3F3; {COM1 Address}

DLL = 6; [19.2k Baud }

DLH = 0;

DLAB ~ 3; {8 Data, No Parity, 1 Stop BIt}
begin

Port[BASE + 3] := $80; {Write Parameters To Registers}

Port[BASE] := DLL;

Port[BASE + 1] ;= DLH;

Port[BASE + 3] := DLAB;

Port{BASE + 4] := 2;
end;

Page 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-3865 Rev. 3
714-695-9299

OPTO 22 - TECHNICAL NOTES 163-03

BASIC Example
BASEAD% = &H3F8 ’Base Address of COM1
DLL% =~ 6 '19.2k Baud
DLH% =0
DLAB% =3 '8 Data, No Parity, 1 Stop Bit Fer OPTOMUX
OUT BASEAD%+3,&H80 ’Sets Up Control Register 8250
OUT BASEAD%,DLL% "Write Parameters To Registers

OUT BASEAD%+1,DLH%
OUT BASEAD%+3,DLAB%
OUT BASEAD%+4,2 ‘Sets RTS To Always Be Low

Turbo C Example

flinclude <stdio.h>
#include <dos.h>

#idefine BASE 0x2F8 [* COM2 Address *f

#define DLE 0x03 * 38.4% Baud */

#define DLH 0x00

#define DLAB 0x03 {* 8 Data, No Parity, 1 Stop Bit ¥/

void setport ()

outportb(BASE+3,0x80);
outportb(BASE,DLL);
outportb(BASE+1,DLH);
outportb(BASE+3,DLAB);
outportb{BASE+4,2);

}

Microsoft C Example

ffinclude <stdio.h>
#include <conio.h>

ftdefine BASE 0x2F8 J* COM2 Address *f

#idefine DLL 0x03 /" 38.4k Baud *f

#idefine BLH 0x00

#idefine DLAB 0x03 {* 8 Data, No Parity, 1 Stop Bit */

setport ()

outp(BASE+3,0x80);
outp(BASE,DLL);
outp(BASE+1,DLH);
outp{BASE+3,DLAB);
outp(BASE+4,2);

Rev. 3 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 3
714-695-9299

163-03 OPTO 22 - TECHNICAL NOTES

Page 4 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 3
714-695-9299

OPTO 22 - TECHNICAL NOTES #163-04

USING THE OPTOWARE DRIVER WITH Borland’s
Turbo BASIC

The OPTOWARE Driver can be used with Turbo BASIC with the following modification.

Turbo BASIC arrays are stored in their own segments, which are different than the data segment where
integer variables are stored. The driver expects all variables to reside in the segment pointed at by the
8088/80286 DS register. Therefore, to use the driver, you must define all array elements as integer
variables stored consecutively.

The following excerpt from a Turbo BASIC program demonstrates how to define all driver parameters
and how to call the driver.

™ DIMENSION AND INITIALIZE DRIVER PARAMETERS

POSITION15% = 0 * Allocate Arrays As Integer Scalars
POSITION14% =0 ** Instead Of An Integer Array
POSITIONT3% - 0 ** Order Is Important Here

POSITION12% =0
POSITION11% = 0
POSITION10% ~ 0
POSITIONS% =~ ©
POSITIONS% = 0
POSITION7% = 0
POSITIONE6% =~ 0
POSITIONS% = 0
POSITION4% ~ 0
POSITION3% =0
POSITION2% =0
POSITION1% =0
POSITIONO% =~ 0
MODIFIER1% = 0
MODIFIER0% =0
INFO15% ~ 0
INFO14% = 0
INFO13% = 0
INFO12% = O
INFO11% =0
INFO10% = 0
INFO9% =0
INFO8% =0
INFO7% =~ 0
INFO6% =0
INFO5% = 0
INFO4% = 0
INFO3% =0
INFO2% =0
INFO1% = 0
INFOO% = 0

ERRCOB% ~ 0
ADDRESS% =0
CMD% =0

i LOAD THE DRIVER SUBROUTINE

DEF SEG = &H6000 ** Define Segment For Driver

BLOAD "DRIVER.COM",0 " Load The Driver

OPTOWARE% =0 * Use "OPTOWARE%" To Call The Driver

Rev. 2 OPTO 22 - 43044 Business Park Dr, Temecuia CA 92580-3665 Page 1
714-695-9299

#163-04

OPTO 22 - TECHNICAL NOTES

b MAIN ROUTINE

GOSUB SetSerial * Initialize The Serial Port
GOSUB puc ' Send puc To Board 255
GOSUB readstat ** Read Status Of All Inputs

END

" DRIVER CALLING SUBRCQUTINE

CallDriver:

CALL ABSOLUTE OPTOWARE%{ERRCOD%,ADDRESS%,CMD%,POSITIONO%,
MODIFIER0%,INFOD%)

IF ERRCOD% = 0 THEN RETURN

Th

™ ERROR HANDLING CODE

PRINT

PRINT "Error: ";ERRCOD%;" Address: ";ADDRESS%;" Command: ";CMD%
PRINT

RETURN

Ll

i SEND POWER UP CLEAR COMMAND TO ADDRESS 255
puc:

CMD% =0 ** Power Up Clear Command
ADDRESS% = 255

GOSUB CallDriver ** Call The Driver

RETURN

" SEND READ STATUS COMMAND TO ADDRESS 255
b g

¥ et frdefedy de dr e e e dedbode dede e deiede dedee e ded-de dede b de s de b de e dedede e de de e dede e it dedi b dnie detedoiede ke o deied
readstat:

CMD% -~ 12 '* Read Status Of All Inputs
ADDRESS% = 255

GOSUB CallDriver ** Call The Driver

RETURN

1

- SETUP SERIAL PORT SUBROUTINTE
SetSerial:

OUT &H3FB,&H80 '* Setup UART At COMT Address
OUT &H3F8,6 ** For 19.2k Baud

QUT &H3F9,0

OUT &H3FB,3

OUT &H3FC,2

CMD%=101 ** Set Driver Turn Around Delay
INFO0%=10 *To 0.10 Second

GOSUB CallDriver

RETURN

Page 2

OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665
714-695-9299

Rev. 2

OPTO 22 - TECHNICAL NOTES #163-05

USING THE OPTOWARE DRIVER WITH Borland’s

Turbo C

The OPTOWARE driver can be called from Borland's Turbo C, by using the following statements in your

program.

#include <stdio.h>
#include <ctype.h>

"
»
-
*
-
-
*
*
-

I

int near

The following statements are the variable and array
definitions needed to call the driver. All parameters are
declared as global.

Define Driver Parameters

errors, {* OPTOWARE Driver Error Status */

address, [* OPTOMUX Board Address Range 0 - 255 *f

command, f* OPTOMUX command - See OPTOWARE Manual */
positions[161, [* Module Positions Table - See Manual: POSITIONS Array *f
modifiersf 2], [* Modifier Table - See Manual: MODIFIERS Array */

info[16]; [* Info Table - See Manual: INFO Array */

‘l.‘li.“lﬂ'tl’"!"‘i

“f

Declare driver module as a far pascal call, no return values,
and parameter [ist is passed to driver on the stack.

void - This keyword specities no return values.
far - Aligns all memory models.

pascal - This keyword causes arguments to be pushed on the

stack from left to right {last argument Is last pushed).

int - Integer variable.
near - Passes only the offset address, not the segment.

*p1, *p2, *p3, .., *pb - Declares pointers as 16 bits.

void far pascal optoware (int near *p1, int near *p2, int near *p3, int near *p4,
int near *p5, int near *p6};

Rev. 4

OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-3665 Page 1

714-695-9209

#163-05

OPTO 22 - TECHNICAL NOTES

Below is a sample main program which uses the declarations made eatlier. The example sets the driver
to use COM port 2, then sends a Power Up Clear command to the OPTOMUX unit at address 255.
This example assumes that COM port 2 has been previously initialized to the proper baud rate.

main ()

errors = 0; [* Initialize Errors Variable To 0 *f
address=0; [* Initialize Address Variable To A Value */
command =~ 102; [* Select Com Port *f

Info[0] = 2; |* Selects Port 2

optoware (&errors, &address, &command, positions, modifiers, info);
printf ("\nthe return error is: %d\n", errors);

command - 0; [* Power Up Clear Command */
address = 255; |* Address Of OPTOMUX Board */
optoware {&errors, &address, &command, positions, modifiers, info);

printf ("\nthe return errvor is: %d\n", errors);

Mzke sure that you link either the DRIVER.CBJ or IDRIVER.OBJ file with your program. This can be
easily done by declaring the path and file name in the project file, so that Turbo C can find the driver

when compiling.

Page 2

OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-3665 Rev. 4
714-695-9299

OPTO 22 - TECHNICAL NOTES #163-06

USING The OPTOWARE DRIVER With Borland’s
Turbo Pascal 3.0

To interface to the OPTOMUX network using Turbe Pascal version 3, you must use the OPTOWARE
driver which is in the Pascal format (Include file). The Turbo Pascal Include file is called TURBO30.INC
{or IDRIVER.INC on previous OPTOWARE Source disk). The SETPORT.INC file is also included on
the OPTOWARE Source disk; it contains the procedure for initializing the serial port.

These two INCLUDE files must be specified in your program using the Turbe Pascal Include Directive
statement.

{$1turbo30.inc)
{$l setport.inc)

These two statements must be placed before the procedures they contain are referenced (typically, at
the beginning).

To call the OPTOWARE driver, the PrepOptowareDriver procedure must be called once at the beginning
of the program to initialize the driver and variables. After calling that procedure, you can call the
OPTOWARE driver as follows:

Opto{Errors, Address, Command, Positions, Moditiers, Info);

A typical Turbo Pascal 3.0 program would contain the following statements:
Program ProgName;

{41 turbo30.inc} {or idriver.inc}
{$1 setport.inc}

.Begin
PrepOptowareDriver;
SetSerial (2,19200); {Sets Port 2 to 19.2 K baud}

Errors = 0;

Address :=0;

Command := 102; {Sets The Driver To Port 2}

Info [0] :~ 2;

Opto(Errors, Address, Command, Positions, Modifiers, Info);

Command := 0;
Opto{Errors, Address, Command, Positions, Modifiers, info);

End.

Rev. 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 1
714-695-9299

#163-06 OPTO 22 - TECHNICAL NOTES

Version 4 of the OPTOWARE driver contains a new command, Configure Serial Port (command 104),
which configures the serial port to a given baud rate. It also sets it to eight data bits, no parity, and one
stop bit. Command 102, Set Serial Port Number, and command 104 can replace the Include Directive
[$! Setport.inc} and the procedure SetSerial {2,19200) statements. Therefore, the example would be as
follows:

Program ProgName;

[$! turbo30.inc} {or idriver.inc}
Begin
PrepOptowareDriver;
Errors := 0;
Address :=0;
Command := 102; {Set The Driver To Port 2}
Info [0] 1= 2;
Opto(Errors, Address, Command, Positions, Modifiers, Info};
Command := 104; {Configure The Serial Port To 19200 Baud}

Info [0] :~ 19200;
Opto(Errors, Address, Command, Positions, Moditiers, Info);

End.

NOTE: Remember to check for errors after calling the OPTO procedure.

Page 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 2
714-695-9299

OPTO 22 - TECHNICAL NOTES #163-06
USING The OPTOWARE DRIVER With Borland’s
Turbo Pascal 4.0
Turbo Pascal version 4 does not use INCLUDE files to interface to the OPTOMUX network . It links

directly to the OBJECT file contained on the OPTOWARE Source disk. The Turbo Pascal Link
Directives are:

{$L turbod0}
[$L driver}

The TURBQ40 file is the OBJECT file that interfaces between Turbo Pascal version 4 and the

OPTOWARE driver,

NOTE:

Program ProgName;

{$L turbo40)
{$L driver]

Type
Range = Array [0..15] of Integer;
Var
Errors, Address, Command: Integer;
Positions, Modifiers, Info: Range;
Procedure Opto{Var A, B, C: Integer; Var D, E, F:Range); External;

Procedure Optoware; External;

Begin

Errors i~ 0;

Address := 0;

Command := 102; [Set The Driver To Port 2}

Info [0] 1= 2;

Opto(Errors, Address, Command, Positions, Modifiers, Info};
Command := 104; {Contigure The Serial Port To 19260 Baud]

Info [0] := 19200;
Opto(Errors, Address, Command, Positions, Medifiers, Info);

End.

Remember to check for efrors after calling the OPTO procedure.

After the Link Directive statements, you must define the type of variables, the
variables, and the procedures. The following example shows the necessary statements required:

To compile the Turbo Pascal version 4 program on the command line, using the Turbo Pascal Compiler,

type:

TPC filename

Rev. 2

OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665
714-695-9299

Page 3

#163-06 OPTO 22 - TECHNICAL NOTES

Page 4 OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-3665 Rev. 2
714-695-9299

OPTO 22 - TECHN!ICAL NOTES #163-07

Using The Optoware Drivers
With Microsoft’s QuickBASIC

if you are switching from interpretive BASIC to compiled QuickBASIC, be sure to delete the three
statements that loads the OPTOWARE driver into memory. The three statements are:

DEF SEG = &H3300
BLOAD "DRIVER.COM",0
OPTOWARE - 0

Using The OPTOWARE Driver
With Microsoft’s QuickBASIC 2.0

Microsoft's QuickBASIC 2.0 currently works with OPTOWARE Version 3.01 and above with no
modifications.

Using The OPTOWARE Driver
With Microsoft’s QuickBASIC 3.0

Treat the call to the OPTOWARE driver the same as when using the IBM BASIC compiler. However,
some users have experienced problems when placing the CALL OPTOWARE statement in
subprograms, Therefore, the CALL OPTOWARE statement should remain in the main program. The
CALL OFPTOWARE statement can reside as a subroutine in the main program and be accessed by calls
from subprograms.

Compite the program from the command line rather than from the QuickBASIC environment. The
command line should look like this:

QB filename.ext |DONV[E;

This will generate an OBJ file that does not require the runtime library, allows all interrupt driven events,
and also perform error checking. The [options may change depending on the program requirements,
The ; allows the compiler to use the default settings when compiling.

To link the driver use the following command:

LINK filename.ext + DRIVER + GWCOM;
or
LINK filoriame.ext + IDRIVER + GWCOM;

The DRIVER.OBJ fite is the standard polled version of the driver, the IDRIVER.OBJ file is the interrupt
version of the driver. The polled version of the driver will work at baud rates from 300 to 19200 with no
problems except that if you are doing a lot of communications, the PC's timer may lose clock ticks. This
happens because the polled version of the driver must disable all system interrupts while it is waiting for
a response from OPTOMUX. The interrupt version of the driver also waits in a loop for the response but
allows all system interrupts to continue, so no clock ticks are missed.

When using QuickBASIC ON KEY and ON TIMER statements with the interrupt version of the driver
(IDRIVER) communicating with OPTOMUX at 19200 baud, there is a possibility that characters may be
dropped during communications, resulting in checksum errors (error code = -31). The solution is to use
a slower baud rate.

Rev. 3 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 1
714-695-9299

#163-07 OPTO 22 - TECHNICAL NOTES

Using The OPTOWARE Driver
With Microsoft’s QuickBASIC 4.0

Application programs written to be compiled using Microsoft’s QuickBASIC 4.0 must be modified. Three
additional statements must be added, two at the beginning of the program and one after DiMensioning
the OPTOWARE array variables and the CALL OPTOWARE statement must be modified. The three
additional statements are:

REM $STATIC
DECLARE SUB OPTOWARE {A%, B%, C%, BYVAL D%, BYVAL E%, BYVAL F%}
DIM Statements For The OPTOWARE Driver Array Variables

COMMON SHARED ERRCOD%, ADDR%, CMD%, POSI%(), MODBI%(), INFO%()

The CALL OPTOWARE statement must be modified to:

CALL OPTOWARE(ERRCOD%, ADDR%, CMD%, VARPTR(POSI%(0)),
VARPTR(MODI%(0)), VARPTR{INFO%(0)))

Please note that integer variables in the DECLARE SUB OPTOWARE statement are dummy variables.
They are not used in the remainder of the program. However, the COMMON SHARED statement must
contain the integer variables which are referenced in the program. The COMMON SHARED statement
must also precede any executable statements, Please refer to Microsoft's "Reference Manual”
regarding these commands and statements.

Compile and link on the command line as follows after the application program has been modified:

BC filename.ext |DJOJV/IE;

LINK filename.ext + IDRIVER;

Please refer to Chapter 8 in Microsoft's "Learning And Using Microsoft QuickBASIC" manual on how to

create Quick Library (QLB) and Library (LIB) files. This is only required to run the program in the
QuickBASIC environment and create an executable file from the QuickBASIC environment.

Page 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev, 3
714-695-9289

OPTO 22 - TECHNICAL NOTES #163-08

USING The OPTOWARE DRIVER
With Microsoft’s C 4.0/5.0

The OPTOWARE driver can be called from Microscft C Version 4.0 and 5.0, by using the following
statements in your program. The program example uses the small memory model.

flinclude <stdio.h>
#finclude <ctype.h>

* The following statements are the variable and array

* detinitions needed to call the driver. All parameters are

* declared as global.

*

L]

* Define Driver Parameters

"

int near errors, f* OPTOWARE Driver Error Status */
address, /* OPTOMUX Board Address Range 0 - 255 */
command, J* OPTOMUX Command - See OPTOWARE Manual */
positions[16], [* Module Positions Table - See Manual: POSITIONS Array *f
modifiers[2], [Modifiers Table - See Manual: MODIFIERS Array */
info] 16]; [* Info Table - See Manual: INFO Array */

i

* Declare driver module as a far pascal call, no return values,

* and parameter list is passed to driver on the stack.

* vold - This keyword specifies no return values,

* far - Aligns all memory models.

»

d pascal - This keyword causes arguments to be pushed on the

* stack from left to right (last argument is last pushed).

* int - Integer variable.

* near* - Declares pointers as 16 bits.

i

void far pascal optoware (int near*, int near®, int near*, int near®, int near*, int near);

Rev. 5 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 1
714-695-9209

#163-08

OPTO 22 - TECHNICAL NOTES

Below is a sample main program which uses the declarations made earlier. The example sets the driver
to use COM port 2, then sends a Power Up Clear command to the OPTOMUX unit at address 255.
This example assumes that COM port 2 has been previously initialized to the proper baud rate.

main ()

errors = 0, {* initialize Errors Variable To 0%/
address= 0; [* Initialize Address Variable To A Value *f
command = 102; |* Select Com Port*f

info[0]=2; [* Selects Port 2 ¥/

optoware {&errors, &address, &command, positions, modifiers, info);
printf {"inthe return error is: %d\n", errors);

command =~ 0; {* Power Up Clear Command */
address = 255; f* Address Of OPTOMUX Board *f
optoware (&errors, &address, &command, positions, modifiers, info);

printf ("\nthe return error is: %d\n", errors);

Make sure that you link either the DRIVER.OBJ or IDRIVER.ORJ file with your program.

Page 2

OPTO 22 - 43044 Business Park Dr, Temecula CA 82590-3665 Rev. 5
714-695-9299

OPTO 22 - TECHNICAL NOTES #163-09

ASSEMBLY LANGUAGE PROGRAMMING For The L.C2

BASIC is an easy and fairly friendly language to use. One of its main problems is that it is slow.
Machine language subroutines can be used to increase the performance of your BASIC code.

HARDWARE

Before you can competently write machine language routines for the L.C2, you have to be familiar with
the hardware. The main hardware components of the LC2 are:

PROCESSOR:

The processor used on the LC2 is the Zilog Z80. The Z80 is an 8 bit processor running at 4.9
MHz.

SERIAL PORTS:

The two serial ports on the LC2 are derived from the Zilog DART. The DART is a two channel
serial port chip. !t is located in the IO space at addresses 0 through 3. COMO uses channel A of
the DART and COM1 uses channe! B of the DART.

Each serial port is able to tri-state it's RS422/485 driver chips (allowing muitidropping of the
LC2s). The RTS (Request To Send) fine is used to enable and disable the driver chips. Each
port uses it's own RTS line to control it's driver. Setting the RTS bit high in the DART will enable
the driver chip, sefting the RTS bit low in the DART will disable the driver chip.

The Rl input {Ring Indicator) on channel B is connected to the interrupt output of the RTC (real
time clock). Every 0.1 seconds an interrupt is generated. This interrupt is used for the ON
TIMER statement in the BASIC.

WATCHDOG TIMER:

The Watchdog Timer output is the DTR {Data Terminal Ready) output on channel A of the DART.
This line must be toggled at least once every 100 ms, otherwise, your LC2 will reset. The
banging of the Watchdog Timer is normally handled by BASIC.

REAL TIME CLOCK:
The Real Time Clock chip is the National MM58274. |t is addressed from 10 Hex to 1F Hex.

ROM:
The LC2 has 32K of ROM addressed from 0 to 7FFF Hex.

RAM:
There is 32K of battery backed RAM addressed from 8000 Hex to FFFF Hex.

Hev. 3 OPTOC 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 1
714-695-8209

#163-09 OPTO 22 - TECHNICAL NOTES

SOFTWARE

There are two BASIC statements that are used when accessing your own machine language
routines, the CLEAR statement and the CALL statement.

CLEAR STATEMENT

The clear statement is used for allocating space for your machine language routines. The
CLEAR will move the start of your BASIC program the specified number of bytes away from
the start of RAM (8000 Hex). Your BASIC program will not be trash by this command. The
following examples reserves 150 bytes of space for you machine language routine:

100 CLEAR 150 'Clear Space For Subroutine

NOTE: After clearing some RAM space, you should not do a NEW statement. A NEW will
deallocate the RAM you have cleared. To remove the existing BASIC ptogram without
deallocating the reserved RAM, do a DELETE command. The following example will
remove the existing BASIC program without deallocating the reserved RAM:

DELETE 'Delete With No Numbers Means Delete All

CALL STATEMENT

Machine language subroutines are accessed via the CALL statement. Using the CALL
statement, you can pass variables to the machine language subroutine. The CALL passes
pointers to the variable data, not the data itself.

The possible data types that can be passed are integer variables, floating point variables
and string variables. Each variable type uses different amounts of storage, so your
subroutine must know what data type(s) it is manipulating.

DATA TYPES

INTEGER VARIABLES

Integer variables take up two contiguous bytes of storage. The low byte of the data is in
low memory and the high byte of data is in high memory.

FLOATING POINT VARIABLES

Floating point variables take up fwo contiguous bytes of storage. The low byte of the
mantissa is store in low memory, the middle byte is next, the high byte of the mantissa is
next and the exponent is last.

Page 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 3
714-695-9299

OPTO 22 - TECHNICAL NOTES #163-09

STRINGS

Strings are anywhere from 0 to 255 bytes long. Each string is terminated with a 03 Hex.
Do NOT change the length of a string in your machine language subroutine, you will only
confuse the BASIC interpreter.

ARRAYS

The data in an array is stored contiguously, array element 0 is followed by array element 1,
1 is followed by 2, etc.

ON THE STACK

The data that is given to a machine language routine is passed on the processor stack. A
pointer to each item being passed is pushed on the stack before the subroutine is called.
The last item being passed is actually the first item pushed. Examine the following
example:

CALL TEST (MU, CMEGA1, OMEGA2)

After all the parameters have been pushed onto the stack, a processor call will be
performed. This will push the return address onto the stack. The stack should look as
follows to your machine language routine:

high memory - pointer to OMEGA2
pointer to OMEGA1
pointer to MU

low memory - return address

The stack pointer will be pointing to the low byte of the return address.

WARNING - WARNING - WARNING

If your machine language routine is going to take a while, you must bang the watchdog
timer circuitry. If you don't, the LC2 will be reset. The alternate register set on the Z80 has
been setup by the BASIC for the bang. The following code segement is the code required
for banging the watchdog timer:

DI ;stop the interrupts for a while
EXX ;get the other register set
ouT (C), B ;select correct DART register
ouT(C),D sturn on watchdog bang bit
QuUT(C), B ;select correct DART register
OUT {C), E sturn off watchdog bang bit
EXX ;get original register set
El ;restart the interrupts
Rev. 3 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 3

714-695-9209

#163-09 OPTO 22 - TECHNICAL NOTES

EXAMPLE

The following example clears some memory, loads the machine language routine into the cleared
RAM and then executes the machine language routine,

1000 °

1010

1020 ° Clear Some Memory For A Machine Language Subroutine
1030 °

1040 CLEAR 100

1050

1060 ° Now Poke Exchange Routine Into Cleared RAM

1070

1080 FOR X% = &H8000 TO &HB00F

1090 READP% ‘Get Program Byte

1100 POKE X%, P% 'Stick Program Byte Into RAM
1110 NEXT

1120 °

1130 '

1140 EXCHANGE% = &HB8000 'Define Address Of Subroutine
1150

1160 ’ Set Up Some Variable To Pass To Routine

1170

1180 ALPHA% = 12345

1190 BETA% = 23456

1200 '

1210 ° Print The Variables

1220 -

1230 PRINT ALPHA%, BETA%

1240 °

1250 ° Now Do Call To Exchange The Variables

1260

1270 CALL EXCHANGEY (ALPHA%, BETA%) Do Call

1280 '

1290 ° Now Print The Variables Again

1200

1310 PRINT ALPHA%, BETA%

1320 °

1330

1340 ° This Is The Machine Language Subroutine

1350 °

1360 POP HL ;get return address from stack

1370 DATA &HE1

1380 ° POP DE ;get pointer to 1st parameter

1380 DATA &HD1

1400 EX {SP), HL :exchange return with 2nd parameter
Page 4 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 3

714-695-9299

OPTO 22 - TECHNICAL NOTES #163-09
1410 DATA &HE3
1420 ° LD A, (DE) ;get low byte of 1st parameter
1430 DATA &H1A
1440 ° LD C, {(HL) ;get low byte of 2nd parameter
1450 DATA &H4E
1460 °* LD (HL), A yand put 1st into 2nd variable
1470 DATA &H77
1480 °' LDA,C ;get low byte of 2nd parameter
1480 DATA &H79
1500 LD (DE), A yand put 2nd into 1st variable
1510 DATA &H12
1520 ° INC HL
1530 DATA &H23
1540 INC BE
1550 DATA &H131560 ° LD A, (DE) ;get high byte of 1st parameter
1570 DATA &H1A
1580 ° LD C, (HL) ;get high byte of 2nd parameter
1590 DATA &H4E
1600 LD (HL), A ;and put 1st into 2nd variable
1610 DATA &H77
1620 ° LD A, C ;get high byte of 2nd parameter
1630 DATA &H79
1640 LD (DE), A ;and put 2nd into 1st variable
1650 DATA &H12
1660 ' RET
1670 DATA &HCS
1680

Rev. 3 OPTO 22 - 43044 Business Park Dr, Temecula CA 82590-3665 Page 5

714-685-9299

#163-09 OPTO 22 - TECHNICAL NOTES

Page 6 QOPTO 22 - 43044 Business Park Dr, Temecula CA 82580-3665 Rev. 3
714-695-9299

OPTO 22 - TECHNICAL NOTES #163-10

ASSEMBLY LANGUAGE PROGRAMMING For The LC4

BASIC is an easy and fairly friendly language to use, One of its main problems is that it is slow.
Machine language subroutines can be used to increase the performance of your BASIC code.

HARDWARE

Before you can competently write machine language routines for the LC4, you have to be familiar with
the hardware. The main hardware components of the LC4 are:

PROCESSOR:

The processor used on the LC4 is the Hitachi 64180. The 64180 a highly integrated Z80 type of
processor. The processor contains two serial channels, two DMA channels, two counter timers
and a memory management unit. Besides the integration of the above peripherals, the instruction
set has had any of the wasted cycles removed. This lets the 64180 run faster than the Z80 using
the same clock speed.

The 64180 allows you to move the internal peripherals to different /O addresses. The BASIC
interpreter does not modify the [{O addresses, so the IfO space for the internal peripherals starts
at address 0 (default power-up address).

SERIAL PORTS:

The serial ports on the LC4 base board are contained in the 64180. Channel 0 is used for COMO
and channel 1 is used for COM1.

The enabling and disabling of the RS422/485 driver chips is handled by writing a value {0 a
memory location. The memory address you write to is 380E0 Hex (remember that the 64180 can
talk to 512K of RAM). Bit O controls the tri-stating of COM1 and bit 7 controls the tri-stating of
COMO. A1 bit will enable the driver chip and a 0 bit will disable the driver.

WATCHDOG TIMER:

The Watchdog Timer circuitry needs to be banged at least once every 100 ms, else the LC4 will
be reset. To bang the Watchdog, output any value to address CO Hex.

REAL TIME CLOCK:
The Real Time Clock chip is the Epson RTC-62421. It is addressed from 50 Hex to 5F Hex.

ROM:
The LC4 BASIC has 32K of ROM addressed from 0 to 7FFF Hex.

RAM:

There is 64K of battery backed RAM addressed from 10000 Hex te 1FFFF Hex. The startup code
for the BASIC maps the RAM to 08000 to 17FFF Hex. If possible, try not to use the RAM above
OFFFF Hex. If you need to use the extra RAM, do not use the RAM from 10000 to 103FF Hex.
This section of RAM is used for the serial port input buffers.

Rev. 3 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 1
714-695-9299

#163-10 OPTO 22 - TECHNICAL NOTES

SOFTWARE

There are two BASIC statements that are used when accessing your own machine language routines,
the CLEAR statement and the CALL statement.

CLEAR STATEMENT

The clear statement is used for allocating space for your machine language routines. The CLEAR
will move the start of your BASIC program the specified number of bytes away from the start of
RAM (8000 Hex). Your BASIC program will not be trash by this ccmmand. The following
examples reserves 150 bytes of space for you machine language routine:

100 CLEAR 150 'Clear Space For Subroutine

NOTE: After clearing some RAM space, you should not do a NEW statement. A NEW will
deallocate the RAM you have cleared. To remove the existing BASIC program without
deallocating the reserved RAM, do a DELETE command. The following example will remove the
existing BASIC program without deallocating the reserved RAM:

DELETE 'Delete With No Numbers Will Delete All

CALL STATEMENT

Machine language subroutines are accessed via the CALL statement. Using the CALL statement,
you can pass variables to the machine language subroutine. The CALL passes pointers to the
variable data, not the data itself.

The possible data types that can be passed are integer variables, floating point variables and
string variables. Each variable type uses different amounts of storage, so your subroutine must
know what data type(s) it is manipulating.

DATA TYPES

INTEGER VARIABLES

Integer variables take up two contiguous bytes of storage. The low byte of the data is in low
memory and the high byte of data is in high memory.

FLOATING POINT VARIABLES

Floating point variables take up four contiguous bytes of storage. The low byte of the mantissa is
store in low memory, the middle byte is next, the high byte of the mantissa is next and the
exponent is fast.

STRINGS

Strings are anywhere from 0 to 255 bytes long. Each string is terminated with a 03 Hex. Do
NOT change the length of a string in your machine language subroutine, you will only confuse the
BASIC interpreter.

Page 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-3665 Rev, 3
714-695-9299

OPTO 22 - TECHNICAL NOTES #163-10

ARRAYS

The data in an array is stored contigucusly, array element 0 is followed by array element 1, 1 is
followed by 2, etc.

ON THE STACK

The data that is given to a machine language routine is passed on the processor stack. A pointer
to each item being passed is pushed on the stack before the subroutine is called. The last item
being passed is actually the first item pushed. Examine the following example:

CALL TEST (MU, OMEGA1, OMEGAZ2)

After all the parameters have been pushed onto the stack, a processor call will be performed.
This will push the return address onto the stack. The stack should look as follows to your
machine language routine:

high memory - pointer to OMEGA2
pointer to OMEGA1
pointer to MU

low memory - return address

The stack pointer will be peinting to the low byte of the return address.

WARNING - WARNING - WARNING

If your machine language routine is going to take a while, you must bang the watchdog
timer circuitry. If you don't, the |.C4 will be reset. The following code segement is the code
required for banging the watchdog timer:

OuT (oCoH), A ;bang the watchdog timer

Rev. 3 QPTO 22 - 43044 Business Park Dr, Temecula CA $2580-3665 Page 3
714-695-9299

#163-10

OPTO 22 - TECHNICAL NOTES

EXAMPLE

The following example clears some memory, loads the machine language routine into the cleared
RAM and then executes the machine language routine.

1000
1010
1020
1030
1040
1050
1060
1070
1080
1080
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1380
1400

]
1
3

Clear Some Memory For A Machine Language Subroutine

1

CLEAR 100

! Now Poke Exchange Routine Into Cleared RAM

FOR X% = &H8000 TO &HB0OF

READ P% 'Get Program Byte

POKE X%, P% ’Stick Program Byte Into RAM
NEXT

EXCHANGEY% - &H8000 'Define Address Of Subroutine
’ Set Up Some Variable To Pass To Routine
ALPHA% = 12345

BETA% = 23456

! Print The Variables

PRINT ALPHA%, BETA%

Now Do Call To Exchange The Variables

CALL EXCHANGE®% {ALPHA%, BETA%) Do Call

Now Print The Variables Again

PRINT ALPHA%, BETA%

i This Is The Machine Language Subroutine

! POP HL ;get return address from stack
PATA &HE1
DATA &HD1
' EX (SP), HL sexchange return with 2nd parameter

POP DE ;get pointer to 1st parameter

Page 4

QPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 3

714-695-9209

OPTO 22 - TECHNICAL NOTES #1463-10
1410 DATA &HE3
1420 LD A, (DE) ;get low byte of 1st parameter
1430 DATA &H1A
1440 LD C, (HL} 1get low byte of 2nd parameter
1450 DATA &H4E
1460 ° LD (HL), A ;and put 1st into 2nd variable
1470 DATA &H77
1480 ° LDA, C 1get low byte of 2nd parameter
1480 DATA &H79
1500 LB{DE), A ;and put 2nd into 1st variable
1510 DATA &H12
1520 ° INC HL
1530 DATA &H23
1540 ° INC DEC
1550 DATA &H13
1560 °’ LD A, (DE) ;get high byte of 1st parameter
1570 DATA &H1A
1580 ° LD C, (HL) ;get high byte of 2nd parameter
1590 DATA &HAE
1600 °* LD {HL}, A ;and put 1st into 2nd variable
1610 DATA &H77
1620 ' LD A, C :get high byte of 2nd parameter
1630 DATA &H79
1640 ' LD (DE), A yand put 2nd into 1st variable
1650 DATA &Ht2
1660 AET
1670 DATA &HC9
1680 °

Rev. 3 OPTO 22 - 43044 Business Park Dr, Temecula CA 925280-3665 Page 5

714-695-9299

#163-10 OPTO 22 - TECHNICAL NOTES

Page 6 OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-3665 Rev. 3
714-695-6289

OPTO 22 - TECHNICAL NOTES #163-11

LC4/OPTOMUX NETWORK INTERFACE

The LC4 Local Controller is an ideal device for protocol conversion. A protocol converter is a unit which
communicates with one device using one format, translates the information to a different format, then
passes the information to a second device which uses the new format. An example would be a local
controller which collects information frem a unit such as a gas analyzer, then passes this information to
a host computer using the OPTOMUX protocol.

By programming the LC4 to pass data using the OPTOMUX protocol, devices such as gas analyzers,
bar code readers, keyboards, displays, motion controllers, single loop controllers and programmable
controllers can be connected to an OPTOMUX network. The OPTOMUX network provides a standard
distributed interface to IBM PC/AT host computers running standard off-the-shelf software packages
(such as PARAGON LC, The FIX, and ONSPEC). Therefore, by using the LC4 as a protocol converter,
a device can be adapted to a network without having to modify the top level software.

Before we examine how the software for LC4 is written, one must be aware of possible limitations with
this kind of implementation. The OPTOMUX protocol passes data as ASCIl-Hex characters representing
numeric data with an integer range of values. Software packages like PARAGON LC, The FIX, or
ONSPEC poll OPTOMUX units and transfer data as either analog, or digital values in the integer range
of 0 to 40985 (12-bit values). Discrete or digital data is an integer value in the range of 0 to FFFF Hex,
with the status of each bit position representing one position on a discrete module rack.

This example does not apply for applications which must pass ASCIl messages back to the host
because the software at the host level would have to be modified to accept and correctly interpret ASCII
character strings. In this case, it may be wiser to use an AC31 and modify the host software to use the
driver. The AC31 is an interface to the OPTOMUX link which adds addressability and checksum
protection to ASCI| string messages passed to and from standard terminals or ASCI devices. Although,
the AC31 uses the OPTOMUX format for START OF MESSAGE, ADDRESS, and CHECKSUM
parameters, the imbedded data can be in an ASCIl format. However, the LC4 example in this technical
note can be applied to applications where the LC4 contains a series of pre-canned messages used to
transmit to a display device or even another controller. Each message would then be triggered by the
host easily as if it was a discrete position or an analog value.

PROGRAMMING

To allow a programmer to easily create an OPTOMUX shell around a packet of data using the LC2 or
LC4, a set of four machine language subroutines have been added fo the LC2/L.C4 BASIC releases 2
and 3, respectively. These subroutines analyze a received message, send a valid acknowledgement,
send an error, and clear the buffer. The routines are accessed using the BASIC CALL statement and
are listed as follows:

Routine Location Description
16 Clear Communications Buffer
31 Receive A Message And Get A Command
34 Send An Acknowledgement (ACK)
37 Send An Error (NAK)
Rev. 5 OPTQO 22 - 43044 Business Park Dr, Temecula CA 92580-3665 Page 1

714-605-9209

#163-11 OPTO 22 - TECHNICAL NOTES

Each of these routine locations must be assigned to a descriptive dummy variable before they are
called. The following BASIC statements offer an example:

10 CLR.BUF% = 16 'Location Of Clear Buffer Routine

Lk GET.CMD% =31 ’Location Of Recelve Message Command

12 SEND.ACK% = 34 ’Location Of Send Acknowledgement Routine
13 SEND.NAK% = 37 'Location Of Send Error Routine

The routines can now be called by using the call statement. An example would be:

100 CALL CLR.BUF% ’'Go Clear The Buffer

The OPTOMUX format can be briefly described as follows:

The start of message character is a greater than sign (>). This character is followed by two ASCIl-Hex
characters representing the address of the OPTOMUX unit. This address is in the range of 00 to FF
Hex (0 to 255 decimal).

The next part of the message contains a command character followed by a positions bit-mask and any
data (depending with the command).

The final part of the message is a two character checksum followed by a carriage return.

USEFUL LC2 And LC4 BASIC STATEMENTS

With LC2 and LC4, the host port is always open and can be considered logical file number 0.
Therefore, the INPUT #0, INPUT$, and LOC(0) statements can be used to get a specific number of
characters from the buffer.

The Clear Host Communications Buffer Routine

This routine is used to easily remove unwanted messages in the host communications buffer. No
parameters are passed to this routine.

Sample Cali Statement

CALL CLR.BUF%

where CLR.BUF% = 16

The Receive Message/Get Command Routine

This routine is used to receive OPTOMUX type command messages at the HOST
communications port of LC2 or LC4. The routine should be called when a carriage routine is
received at the host port. This can be accomplished by using the ON KEY statement in BASIC.
A single integer parameter containing the address must be passed to the routine. This address is
what the subroutine will use to match with the address in the received message.

Page 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-36565 Rev. 5
714-695-2299

OPTO 22 - TECHNICAL NOTES #163-11

Sample Call Statement

CALL GET.CMD%({A%)

where GET.CMD% = 31 and A% = the address you wish to match.

NOTE: The returned value will be placed in the parameter which held the address (A% in the above example) when the call was
made. Therefore, only use variables that are temporary when passing parameters to this subroutine.

After the routine is executed one of the following three conditions will exist:
1. The routine will return a value of zero if the message was for an address different than
the cone that was passed. In this case, the host communications buffer will NOT have
been cleared.

2, The routine will return a negative value if the message had the correct address, but a
checksum error was detected. In this case, the communications buffer will NOT have
been cleared.

3. The routine will return the ASCII value of the command character if the address and the
checksum verify. In this case, the start of message character, two address characters, the
command character, and the two checksum characters will have been removed from the
input buffer.

The Send Acknowledge Routine

This routine is used to return data to the host. A single string variable must be passed to the
routine. The routine will append the "A" character at the beginning of the siring and place two
checksum characters and a carriage return at the end of the string. If a null string is passed to
the routine, a simple acknowledge will be returned (Acr).

Sample Call Statement

CALL SEND.ACK%(D%$)

where SEND.ACK% = 34 and D$ is the data string.

The Send Error Routine

This routine is used to return error messages. A single integer parameter must be passed to the
routine and be within the range of 0 to 255. The integer value wilt be returned as the error code to
the host with the "N" character at the beginning and a carriage return at the end. The OPTOMUX
etror messages do not use a checksum.

Sample Call Statement

CALL SEND.NAK%(E%)

where SEND.NAK% = 37 and E% is the error number from 0 to 255,

Rev. 5 OPTOQ 22 - 43044 Business Park Dr, Temecula CA 92580-3665 Page 3
714-695-9299

#163-11

OPTO 22 - TECHNICAL NOTES

Below is a list of OPTOMUX error messages which can be used to simulate an OPTOMUX type error to
the existing host programs which act on these errors.

Error Description

00 Power Up Clear Expected
A command other than an "A" was aftempted after a power-up
or power fail condition. Once the error is returned, it is
unnecessary to execute a Power Up Clear commmand, the next
command will execute normally.

01 Undefined Command
The command character was not a valid command character,

02 Checksum Error
The checksum received did not match the sum of the characters
in the command.

03 Input Buffer Overrun
The received command contained more than 71 characters for
analog or 16 characters for digital OPTOMUX messages.

04 Non-printable ASCIl Character Received
Only characters from 21 Hex to 7F Hex are permitted in
OPTOMUX messages.

05 Data Field Error
Not enough characters were received.

06 Communications Link Watchdog Time Out Error

07 Specific Limits Invalid

Page 4 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 5

714-695-9299

OPTO 22 - TECHNICAL NOTES #163-11

SUBROUTINE EXAMPLES

The following LC2/LC4 BASIC program segments give examples of using each command. This is not a
complete program, and only illustrates how these subroutines may be used,

' USEFUL CONSTANTS

110 CLR.BUF% = 16 'Clear Buffer Routine Location

120 GET.CMD% ~ 31 'Receive Message Location

130 SEND.ACK% =34 'Location Of Send Acknowledgement Routine
140 SEND.NAK% =37 'Location Of Send Error Routine

150 BOARDY% = 255 'Phony OPTOMUX Address To Respond To
160 CKSM.ERR% =2 'OPTOMUX Checksum Error

170 ACK$ - 'A Simple Acknowledge

! INITIALIZE TO INTERRUPT ON A RECEIVED MESSAGE

610 ON KEY(CHR$(13)) GOSUB 800 'Set A Jump On A Carrlage Return
620 KEY(CHR$(13)) ON ’Activate Interrupt

’ HANDLE THE RECEIVED MESSAGE

800 A% - BOARD% 'Put Address In Temporary Variable

810 ACK$ =" *Simple Acnowledge Acr

820 CALL GET.CMD%({A %) 'Pass The Temporary Variable

830 IF A% =0 THEN RETURN 'Command Not For Us

840 IF A% < 0 THEN GOTO 2000 'Checksum Error, Handle It

850 IF A% ~ 74 THEN GOSUB 3000 'Handle f A% = ASCH J - Write Outs
860 CALL CLR.BUF% 'Clear The Buffer

870 CALL SEND.ACK%({ACK$) 'Return A Simple Acknowledge

880 RETURN

' RESPONSE TO A CHECKSUM ERROR

2000 CALL CLR.BUF% 'Clear Out The Junk

2010 CALL SEND.NAK%(CKSM.ERR%) ’Return A Checksum Error
2020 BRETURN

d HANDLE A "J" COMMAND - WRITE OUTPUTS (Analog)

3000 AMASK% = VAL("&H" + INPUT$(4,0)) 'Get The Bitmask

3010 ADATA% - VAL{"&H" + INPUT$(3,0)) "Get Value
3020 RETURN

Rev. 5 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 5
714-695-9299

#163-11

OPTC 22 - TECHNICAL NOTES

SAMPLE PROGRAM

W w w W e w w w M W M W uw w Mm% w w w oW w o w W o m o m om M om w M ow W W ow oW w oW e W w w w w o ow ow owou

LCMUX - PROGRAM TO MAKE AN LC4 LOOK LIKE A
DIGITAL AND AN ANALOG OPTOMUX.

The LC4 will respond to commands sent to the
following OPTOMUX addresses:

DIGITAL ~ 255
ANALOG =239

This program will answer to the following commands:

- Power Up Clear (digital and analog)

- Reset (digital and analog)

- Turn Around Delay {(acknowledge but do nothing)
- Watchdog Delay (acknowledge but do nothing)

- Protacol (acknowledge but do nothing)

- ldentify CPTOMUX (digital and analog)

Configure Positions (acknowledge but do nothing)
- Configure Inputs (acknowledge but do nothing)

- Configure Qutputs (acknowledge but do nothing)
- Write Outputs {digital and analog)

- Activate Outputs - Digital, Read Outputs - Analog
- Deactivate Outputs - Digital, Read Inputs - Analog
- Read ON/OFF Status - Digital

- Update Outputs - Analog

MIrR-CE"IOTMMOOD>
]

This program will respond with the following errors:

00 ~ Power Up Clear Expected
ol - Undefined Command Error
02 - Checksum Error

=]
(5]
1

Insufficient Or Incorrect Data Error

Two arrays are used for the analog values that are
passed. These arrays are labeled AINS%() for the inputs
and AOUTS%() for the outputs.

Integer values are used for the digital values; DINS% for
inputs and DOUTS% for the outputs.

For demonstration purposes, the main program loop fills
the AINS%() and DINS% variables with values, so thata
host program can poll and receive changing values.

In an actual application, the actual field device would

be interrogated, and its values placed in the appropriate
variables,

Page 6

OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-3665
714-695-9299

Rev. 5

OPTO 22 - TECHNICAL NOTES #163-11
500 !
510 '
520 7 NOTE: Be carefuf when making the polling routines to the
530 ’ stave device such that they don’t tie up the LC4 interrupts.
540 ! The LC4 needs to respond quickly to the host polling program
550 ’ S0 as not to cause a turn around delay error at the host.
560 ! Avold using commands such as INPUT, DELAY, and WAIT which
570 ° tie up LC4 and prevent it from servicing the ON COM and
-1 ON TIMER commands.
590 °
600
610 '
620 ° VARIABLE ASSIGNMENTS
630 °’
640 DIM AINS%{15) 'Analog Input Variables
650 DIM AOCUTS%{15) 'Analog Output Variables
660 CLR.BUF% = 16 ’Clear Buffer Routine Location
670 GET.CMD% = 3t ’Get Command If There Is One Locations
680 SEND.ACK% = 34 'Location Of Acknowledge Routine
690 SEND.NAK?®% = 37 ’Location Of Error In Acknowkedge Routine
700 BRD.ADR.A% = 239 ’Address Of Analog
710 BRD.ADR.D% = 255 'Address Of Digital
720 DINS% =0 16 Bit Digital Input Varialbe
730 DOUTS% -0 16 Bit Digital Output Variable
740 ’
750 ' COMMAND CONSTANTS
760
770 PUC% -0 'Power Up Clear Command
780 RESET% = 1 'Reset Command
790 CONFIGURE% = 8 'Configure Outputs Command
800 ACTIVATE% =10 'Activate Digital Outputs Command
810 DEACTIVATE% = 11 'Deactivate Digital Outputs Command
820 READ.ANL% = 37 'Read Analog Outputs Command
830 WRITE.ANL% = 35 'Write Anafog Outputs Command
840 ACKS$ - ™ "Null String For Simple Acknowledge
850 DIG.ID$="00" 'IR If You want To Be A Digital Board
860 ANL.ID$~"01" 'ID If You Want To Be An Analog Board
870 CKSM.ERR% =2 ’'Checksum Error Code
880 BAD.CMD.ERR% -1 ’Invalid Command Error Cede
890 BAD.DAT.ERR% =5 *Invalid Command Error Code
800 PUC.ERR% =0 "Power Up Clear Error Code
910 A.PWR.FLAG% = 0'Power Up Clear Flag - Analog
920 D.PWR.FLAG% = 0’Power Up Clear Flag - Digital
930 DEFAULT% =0 'Default Analog Output Value
940 7
950 ° MASK CONSTANTS
960 '
970 DIM MASK%(15} ’Dimension The Array
980 MASK%(0) = &H0001 'Position 0 Mask Bit
930 MASK%(1) = &HO002 "Position 1 Mask Bit
Rev. 5 OPTO 22 - 43044 Business Park Dr, Temecula CA 92580-3665 Page7

714-695-9299

#163-11

OPTO 22 - TECHNICAL NOTES

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1180
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330

1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480
1450

MASK%(2) = &H0004
MASK%(3) = &H0008
MASK%(4) ~ &H0010
MASK%(5) = &H0020
MASK%(6) ~ &H0040
MASK%(7) = &H0080
MASK%(8) = &H0100
MASKY%(9) = &H0200
MASK%(10) = &H0400
MASK%(11) = &H0800
MASK%(12) = &H1000
MASK%(13) = &H2000
MASK%(14) = &H4000
MASK%(15) ~ &H8000

'Position 2 Mask Bit
'Poszition 3 Mask Bit
'Position 4 Mask Bit
'Position 5 Mask Bit
'Position 6 Mask Bit
'Position 7 Mask Bit
'Position 8 Mask Bit
'Position 8 Mask Bit
'Position 10 Mask Bit
'Position 11 Mask Bit
*Position 12 Mask Bit
'Position 13 Mask Bit
'Position 14 Mask Bit
'Position 15 Mask Bit

’ INITIALIZE HOST INTERRUPT

ON KEY(CHR$(13)) GOSUB 1410

KEY(CHR$(13)) ON

'Interrupt On Carriage Return
'Activate Interrupt

! MAIN PROGRAM LOOP GOES HERE

FOR 1% = 0 TO 15
AINS%(I%) = 0

NEXT

FOR P% = 0 TO 4095
FOR [% = 0 TO 15
AINS%(1%) = P%
NEXT

DINS% = INT{TIMER/3)
NEXT

GOTO 1270

END

'Go Through All 16 Positions
’|nitialize To O

’Go Through A Large Range Of Values

‘Do All 15 Analog Positions
'Set Equal To Outer Loop Value

'Set The Digital To A Sequential Value

‘Do It Again

! HOST INTERRUPT ROUTINE (UPON RECEIPT OF CARRIAGE RETURN)

1

C% = BRD.ADR.A%
CALL GET.CMD%(C%)

IF C% = 0 THEN GOTO 1460
{F C% > 0 THEN GOTO 1620

GOTO 2720
C% = BRD.ADR.D%
CALL GET.CMD%({C%)

'Set Analog Address

'Routine To Check For Analog Board
'Command Not For Analog
'Command For Analeg Else Checksum Error

'Set Digital Address
'Check For Digital Board

IF C% = 0 THEN GOTO 1510
IF C% > 0 THEN GOTO 1560

'Command Not For Digital Either
'Command For Digital Eise Checksum Error

Page 8

OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665
714-695-9299

Rev. &

OPTO 22 - TECHNICAL NOTES #163-11

1500 GOTO 2720
1510 CALL CLR.BUF%
1520 RETURN
1530 °
1540 °* CHECK FOR POWER UP ON DIGITAL
1550 *
1560 IF C% =65 THEN GOTO 2010 ‘Command Is An A, Power Up Clear
1570 IF D.PWR.FLAG% > 0 THEN GOTO 1700 ‘See If We Lost Power
1580 GOTO 2850
1580 ’
1600 ° CHECK FOR POWER UP ON ANALOG
1610 °
1620 IF C% -~ 65 THEN GOTO 2240 '‘Command Is An A, Power Up Clear
1630 IF A.PWR.FLAG% > 0 THEN GOTO 2100 'See If We Lost Power
1640 GOTO 2780
1650 '
1660
1670 °
1680 ° PROCESS DIGITAL COMMANDS
1690 °
1700 IF C% < 65 THEN GOTO 2600 ‘Command Not Valid
1710 ON C% - 65 GOTO 2370, 2600, 2600, 2600, 2310
1720 ON C% - 70 GOTO 2180, 2180, 2180, 1770, 1830, 1890, 1950
1730 GOTO 26C0 'K You Get Here, Its Bad
1740
1750 ° DIGITAL WRITE COMMAND
1760 °
1770 PBOUTSY% = VAL{"&H" + INPUT${LOC(0),0)) 'Grab New Bitmask
1780 CALL SEND.ACK%(ACKS$) ’Send Acknowledge
1760 RETURN
1800 °
1810 ' TURN DIGITAL OUTPUTS ON
1820 -
1830 DOUTS% = DOUTS% OR VAL{"&H" + INPUT$(LOC(0),0)) 'Get Bitmask
1840 CALL SEND.ACK%(ACK$) 'Send Acknowledge
1850 RETURN
1860
1870 ° TURN DIGITAL OUTPUTS OFF
1880
1880 DOUTS% = DOUTS% AND (NOT{VAL("&H" + INPUT$(LOC(0),00))) ‘Get Mask
1900 CALL SEND.ACK%(ACK$) 'Send Acknowledge
1910 RETURN
1920 °
1930 ° READ DIGITAL STATUS
1840 °
1950 RESPONSE$ = RIGHT$("0000" + HEX$(DINS%),4) ‘Build Message
1960 CALL SEND.ACK%(RESPONSE$) 'Send It
1970 RETURN
1980 °
1880 * RESPONSE TO A POWER UP CLEAR COMMAND (DIGITAL)
2000 °
Rev. 5 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 9

714-685-8209

#163-11 OPTO 22 - TECHNICAL NOTES

2010 CALL CLR.BUF% 'Clear Out The Junk

2020 CALL SEND.ACK%(ACKS$) *Send Acknowledge

2030 D.PWR.FLAG% =1 'Set The Power Up Flag

2040 RETURN

2050

2060 e

2070

2080 PROCESS ANALOG COMMANDS

2080 °

2100 IF C% < 65 THEN GOTO 2600 'Command Not Valid

2110 ON C% - 65 GOTO 2510, 2600, 2600, 2600, 2450
2120 ONC% -70 GOTO 2180, 2180, 2180, 2920, 3270, 3140

2130 IFC% = 83 GOTO 3040 'Update Analog Qut Command
2140 GOTO 2600 'lf You Get Here, Its Bad
2150 °
2160 ° SIMPLE ACKNOWLEDGE
2170 °
2180 CALL CLR.BUF% "Clear Out The Junk
2190 CALL SEND.ACK%{ACK$) 'Send Acknowledge
2200 RETURN
2210 °
2220 RESPONSE TO A POWER UP CLEAR COMMAND
2230
2240 CALL CLR.BUF% 'Clear Out The Junk
2250 CALL SEND.ACK%{ACK$) 'Send Acknowledge
2260 A.PWR.FLAG% =1 'Set The Power Up Flag
2270 RETURN
2280
2290 ° RESPONSE TO AN IDENTIFY OPTOMUX COMMAND (DIGITAL)
2300 °
2310 CALL CLR.BUF% 'Clear Out The Junk
2320 CALL SEND.ACK%({DIG.ID$) 'Send Acknowledge
2330 RETURN
2340 °
2350 ° RESPONSE TO A RESET COMMAND {DIGITAL)
2360 °
2370 DINS% -0 'Set Digital Value To 0
2380 POUTS% ~0D 'Set Digital Value To 0
2380 CALLCLR.BUF% 'Clear Out The Junk
2400 CALL SEND.ACK%(ACK$) 'Send Acknowledge
2410 RETURN
2420
2430 RESPONSE TO AN IDENTIFY OPTOMUX COMMAND (ANALOG)
2440 °
2450 CALL CLR.BUF% 'Clear Qut The Junk
2460 CALL SEND.ACK%(ANL.ID$) 'Send Acknowledge
2470 RETURN
2480 °
2490 - RESPONSE TO A RESET COMMAND (ANALOG)
Page 10 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 5

714-695-9209

OPTO 22 - TECHNICAL NOTES #163-11
2500
2510 FORC% =-0TO15
2520 AOUTS%(C%) =~ DEFAULT%
2530 NEXT
2540 CALL CLR.BUF% *Clear Out The Junk
2550 CALL SEND.ACK%(ACKS$) 'Send Acknowledge
2560 RETURN
2570 °
2580 ° RESPONSE TO A BAD COMMAND {ERROR)
2590
2600 CALLCLR.BUF% 'Clear Out The Junk
2610 CALL SEND.NAK%{BAD.CMD.ERR%) 'Return An Error
2620 RETURN
2630 °
2640 RESPONSE TO BAD DATA (ERROR)
2650 °
2660 CALL CLR.BUF% 'Clear Out The Junk
2670 CALL SEND.NAK%(BAD.DAT.ERR%) 'Return An Error
2680 RETURN
2690
2700 RESPONSE TO A CHECKSUM ERROR
2710 !
2720 CALL CLR.BUF% *Clear Out The Junk
2730 CALL SEND.NAK%(CKSM.ERR%) 'Return The Error
2740 RETURN
2750 '
2760 RESPONSE TO A PUC - ANALOG
2770
2780 CALL CLR.BUF% 'Clear Out The Junk
2790 CALL SEND.NAK%{PUC.ERR%) 'Return The Error
2800 APWR.FLAG% =1 '‘We Powered Up
2810 RETURN
2820 ¢
2830 ° RESPONSE TC A PUC - DIGITAL
2840 -
2850 CALL CLR.BUF% 'Clear Out The Junk
2860 CALL SEND.NAK%({PUC.ERR%) 'Return The Error
2870 D.PWR.FLAGY% =1 'We Powered Up
2880 RETURN
2890
2900 ° WRITE ANALCG OUTPUTS COMMAND
2910 °
2920 IF LOC(0) > 7 THEN GOTO 2660 ’Too Many Characters For This Command
2930 AMASK% = VAL{"&H" + INPUT$(3,0)) *Get The Bitmask
2040 ADATA% = VAL("&H" + INPUT$(3,0)) 'Get The Data Value
2950 FOR S% = 15TO 0 STEP -1 *Check All 15 Positions
2960 IF (AMASKY% AND MASK%(S%)) = 0 THEN GOTO 2980 'if Not This, Next
2970 AOUTS%(S%) = ADATA% 'Get The Value
2980 NEXT
2990 CALL SEND.ACK%(ACKS$) 'Send Acknowledge

Rev. 5 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 11

714-685-9299

#163-11

OPTO 22 - TECHNICAL NOTES

3000
3010
3020
3030
3040
3050
3060
3070
3080
3080
3100
3110
3120
3130
3140
3150
3160
3170
3180
3180
3200
3210
3220
3230
3240
3250
3260
3270
3280
3290
3300
3310
3320
3330
3340
2350
3360

RETURN

' UPDATE ANALOG OUTPUTS

AMASK% = VAL("&H" + INPUT$(4,0)) 'Get The Bitmask

FOR S% = 15 TO 0 STEP -1 "Check All 15 Positions

IF (AMASK% AND MASK%(S%)) = 0 THEN GOTO 3080 ’If Not This, Next
AOUTS%(S%) = VAL("&H" + INPUT$(3,0)) 'Get The Value
NEXT

CALL SEND.ACK%(ACK$) 'Send Acknowledge

RETURN

! READ ANALOG INPUTS COMMAND

AMASKY = VAL{"&H" + INPUT${LOC(0},0)) 'Get The Bitmask

AVALUES - "™

ANSWERS =™

FOR 0% = 15 TO 0 STEP -1 'Check All 15 Positions

IF (AMASK% AND MASK%(0%)) = 0 THEN GOTO 3210 'If Not This, Next
AVALUE$ = "0000" + HEX$(AINS%(0%) + 4096) 'Add 1000 Hex Offset
ANSWER$ = ANSWERS + MID${(AVALUE$,LEN(AVALUES) - 3) 'Get The Value
NEXT

CALL SEND.ACK%(ANSWER$) 'Send Acknowledge

RETURN

' READ ANALOG OUTPUTS COMMAND

AMASK®% = VAL("&H" + INPUT$(LOC{(0},0)) 'Get The Bitmask

AVALUES ="

ANSWER$ ="

FOR M% = 15 TO 0 STEP -1 'Check All 15 Positions

IF (AMASK% AND MASK%(M%)) = 0 THEN GOTO 2340 'If Not This, Next
AVALUES$ = "000" + HEX${AOUTS%{M%)) ‘Do Not Add 1000 Hex Offset
ANSWER$ = ANSWERS$ + MID${AVALUE$,LEN{AVALUES$) - 2) 'Get The Value
NEXT

CALL SEND.ACK%{ANSWER$) 'Send Acknowledge

RETURN

Page 12

OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 5
714-695-9288

OPTO 22 - TECHNICAL NOTES #163-12

USING OPTO 22’S UTILITY PROGRAMS

The following three programs are located on the OPTOWARE Utility Diskette. The Utility Diskette (P/N
9909) is included with the OPTOWARE Driver Package (P/N 9900). If you need a copy of the Utility
Diskette, please call us at 800-854-8851 or 714-891-5861 inside California. Opto 22 also has these
programs on our Bulletin Board System; the BES phone number is 714-892-8375.

HOST.EXE

The HOST program allows the user to send ASCIl Hex characters out the serial port to the OPTOMUX
network. This is useful in checking out the OPTOMUX hardware and configuration andfor debugging

your own OPTOMUX driver. To run the program, type HOST at the DOS prompt. A menu of sslections
will be displayed on the screen. Below is a copy of the HOST screen,

OPTOMUX HOST PROGRAM Version 2.00

PORT: COM1 AT 38, 19200 BAUD
PROTOCOL: 2 PASS REPEAT COUNT =1
ERROR DETECT: ON CHECKSUM ENABLE: ON

FLEASE CHOOSE ONE OF THE BELOW
1 CHANGE COMMAND BUFFER
2 ENTER IMMEDIATE MODE
3 TYPE COMMAND BUFFER
4 CHANGE REPEAT COUNT
5 TOGGLE PROTOCOL
6 TOGGLE ERROR DETECT
P CHANGE COM PORT
B CHANGE BAUD RATE
Q Quit

<cr> SEND BUFFER

PLEASE ENTER SELECTION:

The HOST program automatically enables the CAPS LOCK key, because the OPTOMUX commands

use mostly upper case alphabets. The program defaults to COM1, 19200 baud, two-pass protocol,
repeat count of one, and error detect on and checksum enabled.

Rev. 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 1
714-695-9299

#163-12

OPTO 22 - TECHNICAL NOTES

The following is a summary of the commands to use HOST:

1

Press 1 to enter OPTOMUX commands into the buffer. The program puts the start of
command character (>) at the beginning of the line. If you use the default settings, the
program also computes the checksum of that command line. To complete the command
line, enter a carriage return. To enter additional commands, type the next OPTOMUX
command cn the next line, To get back to the main menu, enter a carriage retum on a
blank line.

Press 2 to get into the Immediate mode. In the Immediate mode, the command you

enter on the screen will be transmitted immediately when you enter a carriage return. The
program puts the start of command character (>) at the beginning of the command and, if
the checksum enable is on, computes the checksum of that command line. Press the ESC
key will return you to the main menu.

Press 3 to display the command(s) in the command buffer on the screen.

Press 4 to change the repeat count. This selects how many iterations the command
buffer wili be send to the OPTOMUX network.

Press 5 to toggle between two- and four-pass protocol. This must match the jumper
setting of the B10 jumper on the OPTOMUX Brain Board (B1 or B2).

Press 6 to cycle through the four possible combinations listed below.

ERRCR DETECT CHECKSUM ENABLE

ON ON
OFF OFF
ON OFF
OFF ON

With the ERROR DETECT off, the audible error beep and the pause functions are disabled. This is
useful when you want to put an oscilloscope on the commusication line. With the CHECKSUM ENABLE
off, the program do not compute the checksum of the OPTOMUX command; you must compute the
checksum or enter two question marks (??).

P

Press P to cycle through the six possible serial port selection. The serial port's Hex
address is also displayed on the main menu. The fifth and sixth serial port addresses are
for communicating from 5

Paragon LC to an LC4 as COM 3 and 4.

B

Q
<CR>

Press B to cycle through the possible baud rate selection. The baud rates are: 300,
600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, and 115,200.

Press Q to quit the HOST program and get back to DOS.

Press the carriage return key to transmit the command(s) in the command buffer.
Some computers label the carriage return key as "Enter” or "Return.”

For information on the OPTOMUX commands, please refer to the "OPTOMUX B1 And B2 Digital And
Analog Brain Boards Operations Manual," Form 203,

Page 2

QPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 2
714-695-9299

OPTO 22 - TECHNICAL NOTES #163-12

0S.COM

OptoScan is a utility program that reads your OPTOMUX network and responds back with the seftings of
all the OPTOMUX stations on the network. [t also allows you to enter the parameters of a given
OPTOMUX station to poll that station for information and allow you to make changes to that station.

The following are tutorialfdemos on how to use OptoScan on your OPTOMUX network. To run the
program, type OS at the DOS prompt.

Example one:

After receiving your OPTOMUX system, you wouid like to set your Group A and B jumpers on the
Brain Boards.

1.

2.

4.

At the main menu, move the cursor to the Baud and enter the desired baud rate,

Move the cursor and select the desired protocol (two- or four-pass, [2] or [4]), station
address ([0] to [255]), link mode {[M]ultidrop or [R]epeat mode), and last board
([Y]es or [N]o).

After making the appropiate selections, the Group A and B Jumpers Sections wili display
the correct jumper settings for Groups A and B.

To get new settings, repeat steps 1 through 3,

Example two:

After completing example one and wiring the OPTOMUX communications network, you would {ike
to test the communications link.

1.

At the main menu, move the cursor to PORT and enter the serial port number of the
OPTOMUX network {1 thru 4). Press the F4 function key, and enter the desired delay
(use the default value). The OptoScan program will communricate to the OPTOMUX
network starting at station address 0 and 300 baud. OpteScan will increment the station
address from 0 to 255 at 300 baud, sending a Power Up Clear command to the
OPTOMUX board address. If the board responds with an acknowledge, it will send an
Identify OPTOMUX Type command. However, if the board response with a -28 error
(invalid return data}, OptoScan will change to four-pass protocol and re-issue the Power
Up Clear command. If the board responds with an acknowledge, OptoScan will record the
settings for the station address, switch back to two-passs protocol, and increment to the
next station address. After incrementing to station address 255, OptoScan will double the
baud rate and start at station address 0. OptoScan will increment up to station address
255 at 38400 baud and stop. On the right side of the main menu, OptoScan will display
the station address, OPTOMUX type, baud rate, and profocol settings of all the OPTOMUX
stations from which OptoScan received an acknowledge response.

Check your configuration with the display on the right side of the main menu, if you need
to change any of your OPTOMUX station settings refer o example one.

Rev. 2

OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 3
714-695-9208

#163-12

OPTO 22 - TECHNICAL NOTES

Example three:

After completing examples one and two and all the field wiring, you would like to read from and
write to field devices on a particular OPTOMUX station.

1.

NOTE:

Set the settings for that OPTOMUX station on the upper left side of the main menu
(BAUD, DELAY, PROTOCOL, and ADDRESS). Toggle to AUTO scan by pressing the F3
function key and then press the F2 function key to SCAN the particular OPTOMUX station.
The status of all 16 points is displayed in the middle of the main menu.

Configure the 16 points using the up and down arrow keys and the F2 function key to
toggle between input and output module. OptoScan displays 16 positions whether you use
a four, eight, or 16 point [/O mounting rack. For a digital input module, when the field input
turns on the LED on the IfO mounting rack will turn on and OptoScan will change from
OFF to ON at that module position. For a digital output module, you can turn ON/OFF the
output module by pressing the F function key with the cursor positioned at the module
position under the STATE column. Press the F10 function key to get back to the main
rmenu.

For analog modules, step 2 is still valid. However, the VALUE column displays the raw
count (0 to 4095) for the analog modules instead of the ON/OFF status. To enter data,
you need to press the F9 function key and then an integer number from 0 to 4095 (0 to
100 percent of scale).

If you want a record of any errors, press the F5 function key to active the error logging
routine. The errors are logged onto a file named ERROR.TXT.

Press the F1 function key for help and follow the instructions on the bottom of the screen. Press the F10 function key

to get to the previous screen or to exit from OptoScan.

Page 4

OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev, 2
714-695-9299

OPTO 22 - TECHNICAL NOTES #163-12

USER.EXE

The USER program allows you to use the OPTOWARE driver to communicate to the OPTOMUX
network. The USER program allows you to enter data into the different variables (ERRORS,
ADDRESS, COMMAND, POSITIONS, MODIFIERS, and INFO) used by the OPTOWARE driver
and then call the driver to send the command to the OPTOMUX network. The following is a
demostration of how to use the USER program. To run the program, type USER at the DOS
prompt.

1. To use the USER program, you must first set the serial port number and then configure
the serial port. To set the serial port number from the main menu, use the arrow keys to
move the cursor over to Driver title and press the carriage return. This displays the Driver
menu with the list of driver commands. Use the arrow keys to move the cursor down to
the Set Port Number command {command 102) and press the carriage return. The
OPTOWARE command menu will be displayed. The OPTOWARE Command menu is
divided into two parts. The upper half describes the command you have selected and
contains an example using the command in IBM BASIC. Use the PgUp and PgDn keys to
page up and down the descriptions half of the screen.

The lower half of the screen contains the variables used by OPTOWARE. Refer to the
upper half of the screen or the OPTOWARE manual regarding how to use the command.
Use the arrow keys to move the cursor to the different variables and variable array
elements. To set the serial port number, use the arrow keys to move the cursor to

INFO ARRAY (0) and enter the appropriate serial port number (1 to 4).

Once the OPTOWARE command is set correctly, press the F2 function key to call the
OPTOWARE driver and execute the command. [f there is an error in the OPTOWARE
driver or communication to OPTOMUX, an error number and error message will be
displayed. Otherwise, the ERRORS variable is set to 0 and the Driver Status displays a
"Command finished" message.

2. The next command is to configure the serial port. Press the ESC key to get back to the
Driver menu and select the Configure Serial Port command {(command 104). Press
carriage return o get to the OPTOWARE command menu. To configure the serial port,
enter the baud rate in INFO%(0) array {i.e., 300, 600, ..., 38400).

Once the OPTOWARE command is set correctly, press the F2 function key to call the
OPTOWARE driver and execute the command. If there is an error in the OPTOWARE
driver or communication to OPTOMUX, an error number and error message will be
displayed. Otherwise, the ERRORS variable is set to 0 and the Driver Status displays a
"Command finished" message.

3. This concludes setting up the serial port for communication to the OPTOMUX network.
The next step would be to issue System commands (i.e., Power Up Clear, Set Turn
Around Delay, etc.) to each OPTOMUX board. After the System commands, the Configure
commands must be issued. The Configure commands informs the OPTOWARE driver
which positions are inputs, outputs, or temperature probes,

4. After issuing the Driver, System, and Configure commands, you are ready to read and
write to the /O modules and setup the Latches, Time Delays, Waveforms, etc. commands.

Rev. 2 OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Page 5
714-695-9299

#163-12 OPTO 22 - TECHNICAL NOTES

OPTO 22 - TECHNICAL NOTES

#163-13

USING THE OPTOWARE DRIVER
With Borland’s Turbo C++

The OPTOWARE driver can be called from Borland's Turbo C++ by using the following statements in
your program.

#include <stdio.h>
#include <dos.h>

I****i***********ti*i**ﬁ**i*i*ﬂ****************i******************************I

I*
I*
I*
I*
l*
I*

The following statements are the variable and array
definitions needed to call the driver. All parameters are
declared as global.

Define Driver Parameters

i
ki
i
*f
*
*

I************************ii*ﬁi****!i*itiiii*iti*i!**ii*iiii*******i*****t*****l

int near errors; [* Driver error status */

int near address;
int near command;
int near positions[16];

int near modifiers[2]; f* Modifiers table - See OPTOWARE Manual:
MODIFIERS array */

int near info[16]; /* Data table - See OPTOWARE Manual: INFO array */
I*************i**ti*!**i**it**t**************************ﬂ********************,
r Declare the driver module as an extern "C" module *
* so that the compiler does not perform what is known *
I as name mangling with the Optoware driver name. *f
* *f
r extern "C" { } - This declaration tells the compiler to *
I suppress name mangling of non-C++ modules., *f
r *
I void - This keyword specifies no return values, *f
P)
* far - Aligns all memory models. *f
I)
f pascal - This keyword causes arguments to be pushed on */
r the stack from left to right (last argument is last pushed). */
f* "
I int - integer variable. *f
” *
I near - Passes only the offset address, not the segment. %/
r *
* *p1, *p2, *pS, ... *pb - Declares pointers as 16 bits, *f
I *

POSITIONS array */

f* OPTOMUX Board Address Range 0-255 */
f* OPTOMUX Command - See OPTOWARE Manual */
f* Module positions table - See OPTOWARE Manual:

I*********#*********W*ﬂ*ﬁ***i**tti***t*tﬁ**ii*ii*i**i*************************l

extern IICII

{

void far pascal optoware(int near *p1, int near *p2, int near *p3,

int near *p4, int near *p5, int near *p6);

Rev, O

OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3685

714-695-9209

Page 1

#163-13

OPTO 22 - TECHNICAL NOTES

Below is a sample main program which uses the declarations made earlier. The exampie sets the driver

to use COM

port 2, configures the serial port, then sends a Power Up Clear command to the OPTOMUX

unit at address 255.

main()

{

{* select the com port */

errors= 0, J* initialize errors variable to 0 */
address= 255; /¥ initialize address variable */
command= 102; /¥ command to select com port */
info[0]= 2; f* selects port 2%/

optoware(&errors, &address, &command, positions, maodifiers, info);
printf("\nThe return error is: %d\n", errors);

{* configure the serial port *f

command= 104; I* configure serial port command */
info[0]= 19200;

optoware(&errors, &address, &command, positions, modifiers, info);
printf("\nThe return error is: %d\n", errors);

/* send power up clear *f

command= 0; {* power up clear command */

info[0]= O; f* initialize info[0} again */
optoware(&errors, &address, &command, positions, modifiers, info);
printf{("\nThe return error is: %d\n", errors);

Make sure that you link either DRIVER.OBJ or IDRIVER.OBJ file with your program. This can be easily
done by declaring the path and file name in the project file so that Turbo C++ can find the driver when

compiling.

Page 2

OPTO 22 - 43044 Business Park Dr, Temecula CA 92590-3665 Rev. 0
714-695-9299

COPTO 22

43044 Business Park Drive » Temecula, CA 92598-3514
Phane: 800/321-CGPTO (6786) or 909/695-3000
Fax: 800/832-0PTO (6786} or 909/695-2712
Internet Web site: http:/fwww.opto22.com

Product Support Services:
800/TEK-BPTQ (835-6786) or 909/695-3080
Fax: 909/695-3017
E-mail: support@opto22.com
Bultetin Board System {BBS}): 909/695-1367
FIP site: ftp.opto22.com

