
Message Queue Logger Example Notes  page 1 

Controller Message Queue Logger Example Notes 

Introduction 
Opto 22’s SNAP PAC System is programmed using PAC Control software. The 
Controller Message Queue Logger example consists of an ioControl program 
(called a strategy) and an ioDisplay program (called a project). ioControl and 
ioDisplay are part of the ioProject software suite. ioProject is the predecessor to 
the PAC Project software suite. 
You can use the sample strategy as a starting point for building your strategy or 
you can incorporate the logic into an existing strategy. Likewise, you can use the 
sample ioDisplay project as a starting point for building your project or you can 
simply incorporate the historic logging into your existing project. 
This document describes how the example works and how to use it. 
Note – The controller’s message queue is an expanded version of what used to 
be called the controller’s error queue. The message queue contains error, 
warning, and informational messages, and can also include user messages. 

PAC Project and ioProject Compatibility 
The strategy was created using ioControl Basic R7.0d. The project was created 
using ioDisplay Configurator Basic R7.0c. The strategy and project can be 
converted to newer versions of ioProject or PAC Project software, as needed. 
This document will use the term Control to refer to ioControl and PAC Control, 
and Display to refer to ioDisplay and PAC Display. 

Purpose of Message Queue Logger 
The message queue logger Control strategy copies message queue entries to a 
persistent string table. The related message logger Display project logs each 
new index of the persistent string table to the computer’s hard drive. This 
provides greater visibility and insight into your system and makes it significantly 
easier to troubleshoot problems when they arise. By implementing message 
logging in your system from the beginning, all error, warning, informational, and 
user messages are automatically logged to your computer’s hard drive as they 
occur. This provides a history of how your system runs under normal conditions. 
When problems occur, you will have a history of normal messages as well as 
error messages to help troubleshoot the cause. 
If you periodically review the files logged to the computer’s hard drive, you may 
be able to identify problems before you even notice symptoms. Also, when a 
problem does occur, it will be helpful to be able to review the log files of when the 
system was functioning correctly. 



Message Queue Logger Example Notes  page 2 

Overview of Functionality 

Control Strategy 
The Powerup chart executes a block called “Startup Messages” in order to 
capture key information regarding the date and time of each occurrence of the 
controller powering up as well as each occurrence of the strategy being started. 
This provides a method of determining if power to the controller was interrupted 
or if a user stopped and restarted the strategy. 
The Powerup chart then starts the chart named Message_Queue_Logger_Chart. 
This chart checks the controller’s message queue and copies the messages to a 
persistent string table. The Display project logs each new entry in the string table 
to a historic log file on the computer’s hard drive. As long as no changes are 
made to the persistent string table configuration, the data in the string table will 
be retained, even if a modified version of the strategy is downloaded. 
Note – Persistent variables retain their values through downloads of updated 
copies of the same strategy. However, persistent variables will be cleared and 
recreated if the any aspect of the persistent variable is changed. For example, a 
persistent variable will not retain its value if the name, table length, or string table 
width is changed. 

Display Project 
The key aspect of the Display project is the configuration of a historic data log to 
log each new entry in the string table to the computer’s hard drive. There is also 
a summary window that displays the total number of times the controller has 
powered up and the total number of times the strategy has been started since the 
last time the strategy was downloaded to the controller. It also shows the current 
index used for copying queue messages to the table, and the index that the 
Display project is using to log messages from the table. The two indexes are 
equal when the Historic log has logged all of the messages. 

Integrating Message Queue Logger Functionality into Your 
System 
You can either start with the examples as the foundation of your system or you 
can add the code into your existing strategy and project. 

Control Strategy 
Export each of the charts from the example strategy, and then import them into 
your strategy. When importing the charts, choose the option to create new charts 
rather than importing the logic into existing charts. This is true of the Powerup 
chart from the example as well. After importing the charts, copy the 2 yellow 
blocks (blocks 76 and 67) from what was the Powerup chart in the example, and 
paste them into your Powerup chart. They should be the first blocks executed 
after Block-0 in your Powerup chart. Then you can delete that chart. This will 
leave the Message_Queue_Logger_Chart as part of your strategy. 



Message Queue Logger Example Notes  page 3 

Note - It is always a good idea to leave Block-0 empty in all charts because it 
makes it easy to insert logic at the beginning of the chart when the need arises. 

Display Project 
Create a Historic Data Log (Configure menu > Historic Data Log) with the Historic 
Log Point being the string named sMessage_To_Log_To_Display. 

 
Configure a Start Trigger that is set up by Discrete ‘On’ using the integer tag 
named nDisplay_Logging_Trigger. 

 



Message Queue Logger Example Notes  page 4 

Set the Number of samples to 1, and then configure the Notification to be set up 
by Discrete ‘Clear’ using the same tag used for the Trigger 
(nDisplay_Logging_Trigger). 
Using Windows Explorer (or similar), create 2 subdirectories from the directory 
where your Display project is located. One should be named “Controller Message 
Queue Log Files” and the other “Event Log Files”. 

 
Click the Log File button and set the Directory Path Name to be “Controller 
Message Queue Log Files”. This will keep all of the message queue log files 
together. Set the Rollover period to Months, and set the number of files to retain 
to a value of 60. This will allow you to accumulate a history. 
Next, Configure the Event Log (Configure menu > Event Log) to log to file by 
selecting the checkbox named Enabled: 

 
Click the File Setup button and set up the Directory Path Name, file Rollover, and 
Number of files to retain using similar values as the Historic Data Log. 

Description of Important Strategy Variables 
stMessage_Queue_Log_Table: 

� This table stores the messages before they are removed from the 
controller’s message queue. When the table has filled up, it wraps 
back around to the beginning (index 0), so it is essentially a circular 
buffer. 

� You can make this table longer if you want to have a longer running 
list of errors. 

� You can adjust the table width (the maximum size of each string it 
can hold) depending on how long or short your tagnames are. The 
initial width of 300 characters takes into account all the information 
available from the controller’s message queue and assumes the 
maximum size (50 characters) for all tag names. It also leaves 
room for possible future expansion. 

� This is a persistent table, so the data will remain in the table when 
the strategy is stopped and started, when power to the controller is 



Message Queue Logger Example Notes  page 5 

turned off and back on, and when modified copies of the strategy 
are downloaded. Because of this, the related index variables are 
also persistent. 

Startup_Message_Chart 
nController_Powerup_Count: 
� Keeps track of the number of times the controller has powered up since 

the last strategy download. 
nStrategy_Start_Count: 
� Keeps track of the number of times the strategy has been started since 

the last strategy download. 
nUp_Time_New (persistent variable): 
� Controller Up Time at the time the strategy was started; used for 

determining if the controller has just powered up. 
nUp_Time_Previous (persistent variable): 
� Controller Up Time at the time the strategy was started the previous time; 

used for determining if the controller has just powered up. 

Message_Queue_Logger_Chart 
The main variables are related to Logging errors to the Display Historic Log file 
and making sure the trigger handshaking does not get out of sequence. 
nDisplay_Historic_Logging_Enable_Flag: Set this variable True (1) if you are 
logging to Display Historic Log; set it False (0) to disable Display Historic 
Logging. 
nDisplay_Logging_Trigger: This variable is set True (1) by strategy logic when 
there are messages in the string table that have not yet been logged; it set False 
(0) by the Display notification feature indicating it has logged the message. 

Version Information 

Version 1.0: 
7/2/08 Created initial version. 


