MONNIT:

Serial MODBUS

Sensor Application Definitions

Version 2.2

Revision History

Version	Date	Description
1.1	$1 / 14 / 2013$	Added more app profiles. Edited Humidity, app profile \# 18 and \# 29
2.0	$10 / 1 / 2013$	Added FRR column
2.1	$9 / 15 / 2014$	Corrected Type 1 math calculation
2.2	$2 / 12 / 2018$	Added additional app profiles.

Data Decoding Table - Gen 1

TYPE	NAME	DATA TYPE	UNIT	DATA	FRR Data
1	Analog Voltage	Unsigned Int16	Volts	Divide data by 1000 for three decimal point resolution. Example: $236 / 1000=0.236$ V. Range: 0-1.25	[0-1250]-[0]-[0]-[0]
2	Temperature	Signed Int16	${ }^{\circ}$ Celsius	Divide data by 10 to get one decimal point resolution. Example: $271 / 10=27.1^{\circ} \mathrm{C}$. Range: -40 to 125	[65136-1250]-[0]-[0]-[0]
3	Dry Contact	Unsigned Int8		0 for loop open and 1 for loop closed in default operation	[0-1]-[0]-[0]-[0]
4	Water	Unsigned Int8		0 for no water present and 1 for water present in default operation	[0-1]-[0]-[0]-[0]
5	Activity, Profile 1	Unsigned Int8		0 for no movement and 1 for movement detected in default operation	[0-1]-[0]-[0]-[0]
9	Open/Closed	Unsigned Int8		0 for magnet absent and 1 for magnet present in default operation	[0-1]-[0]-[0]-[0]
11	Button	Unsigned Int8		0 for button not pressed and 1 for button pressed	[0-1]-[0]-[0]-[0]
12	Control	Unsigned Int8	Relay1 Status Relay2 Status	LSB bit is the status of Relay 1 , which is 0 for off and 1 for on. Bit offset 2 is the status of Relay2.	[0-3]-[0]-[0]-[0]
15	Accelerometer, Profile 1	Signed Int16 / Signed Int16 / Signed Int16	X G-Force Y G-Force Z G-Force	Divide data by 1000 to get three decimal point resolution. Example: -2012 / 1000 = -2.012 G's Range: -8.000 to 8.000	$\begin{aligned} & {[\mathrm{X}]-[\mathrm{Y}]-[\mathrm{Z}]-[0]} \\ & {[65472-8000]-[65472-} \\ & 8000][65472-8000]-[0] \end{aligned}$
16	Accelerometer, Profile 3	Unsigned Int8		Bit 7 - Internal Communication Problems Bit 6 - EA - 1= Global Event Happened, 0=none Bit 5-ZTRANSE-0 = none, $1=$ happened Bit $4-$ Z_Trans_Pol-0 = g+, 1 = g- Bit 3 - YTRANSE - $0=$ none, $1=$ happened Bit 2 - Y_Trans_Pol - $0=\mathrm{g}+, 1=\mathrm{g}$ - Bit 1 - XTRANSE - $0=$ none, $1=$ happened Bit 0-X_Trans_Pol $-0=\mathrm{g}+, 1=\mathrm{g}$ -	[0-255]-[0]-[0]-[0]

19	Activity, Profile 2	Unsigned Int16	Vibrations	Count of vibrations	[0-65535]-[0]-[0]-[0]
20	Accelerometer, Profile 2	Signed Int16 / Signed Int16 /	X G-Force Y G-Force Z G-Force X G-Force Y G-Force Z G-Force	Divide data by 1000 to get three decimal point resolution. The first data set is the MAX recorded value, the second data set is the AVG recorded value. Example: 1244 / $1000=1.244$ G's Range: -8.000 to 8.000 Only the average values are available in the FRR. Max values can only be accessed in the corresponding WDR.	$\begin{aligned} & \text { [DATA_3]- } \\ & \text { [DATA_4][DATA_5]-[0] } \\ & \text { [65472-8000]-[65472- } \\ & \text { 8000][65472-8000]-[0] } \end{aligned}$
21	Lux	Unsigned Int16	Lux	Lux reading. Range: 0-1300	[0-13000]-[0]-[0]-[0]
22	0-20 mA Current	Unsigned Int16	mA	Divide data by 100 to get two decimal point resolution. Example $=744 / 100=7.44 \mathrm{~mA}$	[0-2400]-[0]-[0]-[0]
23	Infrared Motion	Unsigned Int8		0 for no motion detected and 1 for motion detected	[0-1]-[0]-[0]-[0]
24	Flex	Unsigned Int32	Resistance	Divide data by 1000 to get three decimal point resolution. Data_High is in the first FRR register.	[0-65535]-[0-65535]-[0]-[0]
26	Liquid Level, $8^{\prime \prime}$	Unsigned Int16	Inches	Divide data by 100 to get two decimal point resolution.	[0-850]-[0]-[0]-[0]
27	Light Presence	Unsigned Int8		0 for light not present and 1 for light present	[0-1]-[0]-[0]-[0]
28	Compass	Signed Int16	Azimuth degr.	Azimuth reading.	[0-360]-[0]-[0]-[0]

30	Grains Per Pound	Signed Int16 / Signed Int16	$\begin{aligned} & { }^{\circ} \mathrm{C} / \\ & \% \mathrm{RH} \end{aligned}$	Divide data by 100 to get Temperature. Divide data by 100 to get Relative Humidity.	
32	500 VAC/VDC Analog Voltage	Unsigned Int16	Volts	Divide data by 10 to get one decimal point resolution. Example: 1134/10=113.4V Range: 0-500	[0-5000]-[0]-[0]-[0]
33	Vehicle Presence	Unsigned Int8/ Signed Int16	Magnitude	In the state field, the presence is marked 0 for no vehicle and 1 for vehicle presence. This is displayed in the FRR in the first register. The second register contains the data from WDR Data_0	$\begin{aligned} & {[0,1,2,15]-[0-65535]-[0]-[0]} \\ & \text { [STATE]-[DATA_0]-[0]-[0] } \end{aligned}$
34	CO Gas Sensor	Signed Int16/ Unsigned Int16	Temperature PPM	Temperature and the gas concentration in PPM	```[Temp range]-[0-65535]-[0]- [0] [65036-3700]-[0]-[0]-[0]```
35	High Temperature	Signed Int16	${ }^{\circ}$ Celsius	Divide data by 10 to get one decimal point resolution. Example: $2550 / 10=255.0^{\circ} \mathrm{C}$	
36	Liquid Level 24"	Unsigned Int16	Inches	Divide data by 100 to get two decimal point resolution.	[0-2400]-[0]-[0]-[0]

39	Vehicle Detection	Unsigned Int8/ Unsigned Int16/ Unsigned Int16/ Unsigned Int16/	Vehicle Count Magnitude Duration Cnt	The number of vehicles counted, the magnitude of the field and the duration is reported. The direction is displayed in the first FRR register.	$\begin{aligned} & \text { [0, 1, 15]-[0-65535]-[0- } \\ & \text { 65535]-[0-65535] } \\ & \text { [Direction]-[Data_0]- } \\ & \text { [Data_1]-[Data_2] } \end{aligned}$
42	Activity Counter	Unsigned Int16/ Unsigned Int16/	Minutes	The current amount of time of calculated activity followed by the previous reading.	
43	HA Humidity	Signed Int16/ Signed Int16/	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \% R H \end{aligned}$	Divide data by 100 to get Temperature. Divide data by 100 to get Relative Humidity.	```[63536-6000]-[0-10000]-[0]- [0] [0-1000]-[0-65535]-[0-```
46	Low Temperature	Signed Int16	${ }^{\circ} \mathrm{C}$	Divide data by 10 to get one decimal point resolution. Example: $-574 / 10=-57.4^{\circ} \mathrm{C}$	[63536-1620]-[0]-[0]-[0]
47	Multi Input Pulse Counter	Unsigned Int16/ Unsigned Int16/ Unsigned Int16/ Unsigned Int16	Pulses Pulses Pulses Pulses	The cumulative count of pulse events detected since the last heartbeat.	$\begin{aligned} & {[0-65535]-[0-65535]-} \\ & {[0-65535]-[0-65535]} \end{aligned}$
51	Seat Sensor	Unsigned Int8/ Unsigned Int32	KOhms	$0=$ no event, $1=$ event followed by the resistance measured (divide by 1000). Data High is in the second FRR register and Data Low is in the third.	[0-1]-[0-65535]-[0-65535]-[0]
52	Airflow Sensor	Unsigned Int8/ Unsigned Int32	KOhms	$0=$ no event, $1=$ event followed by the resistance measured (divide by 1000). Data High is in the second FRR register and Data Low is in the third.	[0-1]-[0-65535]-[0-65535]-[0]
55	CT1mA	Unsigned Int16	Milliamps	Milliamp divided by 10	[0-10000]-[0]-[0]-[0]
59	Battery Health	Unsigned Int16	Volts	Volts divided by 1000	[0-50000]-[0]-[0]-[0]
64	VAC Detector	Unsigned Int8			
65	Water Temperature	Signed Int16	${ }^{\circ}$ Celsius	Divide data by 10 to get one decimal point resolution. Example: $271 / 10=27.1^{\circ} \mathrm{C}$. Range: -40 to 125	[65136-1250]-[0]-[0]-[0]
70	Resistance Sense	Unsigned Int32			
71	50VDC Detector	Unsigned Int8		1 for voltage present, 0 for absent	[0-1]-[0]-[0]-[0]
72	5VDC Meter	Signed Int16/ Unsigned Int16	Volts	Volts divided by 1000	[0-1]-[0-65535]-[0]-[0]
73	Filtered Pulse Counter	Unsigned Int32	Count	Number of pulses	[0-1]-[0-65535]-[0-65535]-[0]
74	10VDC Meter	Signed Int16/ Unsigned Int16	Volts	Volts divided by 1000	[0-1]-[0-65535]-[0]-[0]
75	Tilt Sensor	3 Signed Int16/ Unsigned Int16			
76	Single Control	Unsigned Int8			

78	Water Area	Unsigned Int8		1 for water present, 0 for absent	[0-1]-[0]-[0]-[0]
79	Pressure	Signed Int16/ Unsigned Int16	PSIG	Pressure divided by 10	[0-1]-[0-65535]-[0]-[0]
84	Duct Temperature	Signed Int16/ Unsigned Int16	${ }^{\circ} \mathrm{C}$	Divide data by 10 to get one decimal point resolution. Example: $271 / 10=27.1^{\circ} \mathrm{C}$. Range: -40 to 125	[65136-1250]-[0]-[0]-[0]
86	Thermocouple	Signed Int16/ Unsigned Int16	${ }^{\circ} \mathrm{C}$	Temperature divided by 10	[0-1]-[0-65535]-[0]-[0]
90	Filtered Pulse Counter	Unsigned Int8	Count	Number of pulses	[0-1]-[0-255]-[0]-[0]
92	Quad Temperature	4 Unsigned Int16	${ }^{\circ} \mathrm{C}$	Divide data by 10 to get one decimal point resolution. Example: $271 / 10=27.1^{\circ} \mathrm{C}$. Range: -40 to 125	[65136-1250]-[0]-[0]-[0]
93	Current Meter 0-20A	3 Signed Int16/ Unsigned Int16	Amps	Amps divided by 100	$\begin{aligned} & {[0-1]-[0-65535]-[0-65535]-[0-} \\ & 65535] \end{aligned}$
95	Vibration Meter	4 Unsigned bytes		X axis, Y axis, Z axis, and duty cycle	$\begin{aligned} & {[0-65535]-[0-65535]-[0-} \\ & 65535]-[0-65535] \end{aligned}$

Data Decoding Table - ALTA

TYPE	NAME	DATA TYPE	UNIT	DATA	FRR Data
2	Temperature	Signed Int16	${ }^{\circ}$ Celsius	Divide data by 10 to get one decimal point resolution. Example: $271 / 10=27.1^{\circ} \mathrm{C}$. Range: -40 to 125	[65136-1250]-[0]-[0]-[0]
3	Dry Contact	Unsigned Int8		0 for loop open and 1 for loop closed in default operation	[0-1]-[0]-[0]-[0]
4	Water	Unsigned Int8		0 for no water present and 1 for water present in default operation	[0-1]-[0]-[0]-[0]
5	Activity, Profile 1	Unsigned Int8		0 for no movement and 1 for movement detected in default operation	[0-1]-[0]-[0]-[0]
9	Open/Closed	Unsigned Int8		0 for magnet absent and 1 for magnet present in default operation	[0-1]-[0]-[0]-[0]
11	Button	Unsigned Int8		0 for button not pressed and 1 for button pressed	[0-1]-[0]-[0]-[0]
12	Control	Unsigned Int8	Relay1 Status Relay2 Status	LSB bit is the status of Relay 1 , which is 0 for off and 1 for on. Bit offset 2 is the status of Relay2.	[0-3]-[0]-[0]-[0]
15	Accelerometer, Profile 1	Signed Int16 / Signed Int16 / Signed Int16	AA G- Force BB Force CC Force	Divide data by 1000 to get three decimal point resolution. Example: -2012 / $1000=-2.012$ G's Range: -8.000 to 8.000	$\begin{aligned} & {[\mathrm{X}]-[\mathrm{Y}]-[\mathrm{Z}]-[0]} \\ & {[65472-8000]-[65472-} \\ & 8000][65472-8000]-[0] \end{aligned}$
16	Accelerometer, Profile 3	Unsigned Int8		Bit 7 -Internal Communication Problems Bit 6 - EA - 1= Global Event Happened, 0=none Bit 5 - ZTRANSE - $0=$ none, $1=$ happened Bit $4-$ Z_Trans_Pol-0 $=\mathrm{g}+, 1=\mathrm{g}$ - Bit 3 - YTRANSE - $0=$ none, $1=$ happened Bit 2 - Y_Trans_Pol - $0=\mathrm{g}+, 1=\mathrm{g}$ - Bit 1 - XTRANSE - $0=$ none, $1=$ happened Bit 0 - X_Trans_Pol $-0=\mathrm{g}+, 1=\mathrm{g}$ -	[0-255]-[0]-[0]-[0]

21	Lux	Unsigned Int16	Lux	Lux reading. Range: 0-1300	[0-13000]-[0]-[0]-[0]
22	0-20 mA Current	Unsigned Int16	mA	Divide data by 100 to get two decimal point resolution. $\text { Example }=744 / 100=7.44 \mathrm{~mA}$	[0-2400]-[0]-[0]-[0]
28	Compass	Signed Int16	Azimuth degr.	Azimuth reading.	[0-360]-[0]-[0]-[0]
32	500 VAC/VDC Analog Voltage	Unsigned Int16	Volts	Divide data by 10 to get one decimal point resolution. Example: 1134/10=113.4V Range: 0-500	[0-5000]-[0]-[0]-[0]
35	High Temperature	Signed Int16	${ }^{\circ}$ Celsius	Divide data by 10 to get one decimal point resolution. Example: $2550 / 10=255.0^{\circ} \mathrm{C}$	[63536-1620]-[0]-[0]-[0]
39	Vehicle Detection	Unsigned Int8/ Unsigned Int16/ Unsigned Int16/ Unsigned Int16/	Vehicle Count Magnitude Duration Cnt	The number of vehicles counted, the magnitude of the field and the duration is reported. The direction is displayed in the first FRR register.	$\begin{aligned} & {[0,1,15]-[0-65535]-[0-} \\ & 65535]-[0-65535] \\ & \text { [Direction]-[Data_0]- } \\ & \text { [Data_1]-[Data_2] } \end{aligned}$
43	HA Humidity	Signed Int16/ Signed Int16/	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \% \mathrm{RH} \end{aligned}$	Divide data by 100 to get Temperature. Divide data by 100 to get Relative Humidity.	[63536-6000]-[0-10000]-[0][0] [0-1000]-[0-65535]-[0-
46	Low Temperature	Signed Int16	${ }^{\circ} \mathrm{C}$	Divide data by 10 to get one decimal point resolution. Example: $-574 / 10=-57.4^{\circ} \mathrm{C}$	[63536-1620]-[0]-[0]-[0]
59	Battery Health	Unsigned Int16	Volts	Volts divided by 1000	[0-50000]-[0]-[0]-[0]
64	VAC Detector	Unsigned Int8			
65	Water Temperature	Signed Int16	${ }^{\circ}$ Celsius	Divide data by 10 to get one decimal point resolution. Example: $271 / 10=27.1^{\circ} \mathrm{C}$. Range: -40 to 125	[65136-1250]-[0]-[0]-[0]
67	Ultrasonic Ranger	Unsigned Int16	Cm	Distance to target	[00010-00400]-[0]-[0]-[0]
71	50VDC Detector	Unsigned Int8		1 for voltage present, 0 for absent	[0-1]-[0]-[0]-[0]
72	5VDC Meter	Signed Int16/ Unsigned Int16	Volts	Volts divided by 1000	[0-1]-[0-65535]-[0]-[0]
74	10VDC Meter	Signed Int16/ Unsigned Int16	Volts	Volts divided by 1000	[0-1]-[0-65535]-[0]-[0]
75	Tilt Sensor	2 Signed Int16/ Unsigned Int16	Degrees	Pitch \& Roll	[0-65535]-[0-65535]-[0]-[0]
78	Water Area	Unsigned Int8		1 for water present, 0 for absent	[0-1]-[0]-[0]-[0]
79	Pressure 50 PSIG	Signed Int16/ Unsigned Int16	PSIG	Pressure divided by 10	[0-1]-[0-65535]-[0]-[0]

82	Pressure 300 PSIG	Signed Int16/ Unsigned Int16	PSIG	Pressure divided by 10	[0-1]-[0-65535]-[0]-[0]
83	Pressure Custom	Signed Int16/ Unsigned Int16	PSIG	Pressure divided by 10	[0-1]-[0-65535]-[0]-[0]
84	Duct Temperature	Signed Int16/ Unsigned Int16	${ }^{\circ} \mathrm{C}$	Divide data by 10 to get one decimal point resolution. Example: $271 / 10=27.1^{\circ} \mathrm{C}$. Range: -40 to 125	[65136-1250]-[0]-[0]-[0]
86	Thermocouple	Signed Int16/ Unsigned Int16	${ }^{\circ} \mathrm{C}$	Temperature divided by 10	[0-1]-[0-65535]-[0]-[0]
90	Filtered Pulse Counter	Unsigned Int8	Count	Number of pulses	[0-1]-[0-255]-[0]-[0]
92	Quad Temperature	4 Unsigned Int16	${ }^{\circ} \mathrm{C}$	Divide data by 10 to get one decimal point resolution. Example: $271 / 10=27.1^{\circ} \mathrm{C}$. Range: -40 to 125	$\begin{aligned} & \text { [65136-1250]-[65136 - } \\ & 1250]-[65136-1250]-[\\ & 65136-1250] \end{aligned}$
93	Current Meter 0-20A	3 Signed Int16/ Unsigned Int16	Amps	Amps divided by 100	$\begin{aligned} & {[0-1]-[0-65535]-[0-65535]-[0-} \\ & 65535] \end{aligned}$
94	Current Meter 0-150A	3 Signed Int16/ Unsigned Int16	Amps	Amps divided by 100	$\begin{aligned} & {[0-1]-[0-65535]-[0-65535]-[0-} \\ & 65535] \end{aligned}$
95	Vibration Meter	4 Unsigned bytes		X axis, Y axis, Z axis, and duty cycle	$\begin{aligned} & {[0-65535]-[0-65535]-[0-} \\ & 65535]-[0-65535] \end{aligned}$
100	Food Grade Temperature	Unsigned Int16	${ }^{\circ} \mathrm{C}$	Divide data by 10 to get one decimal point resolution. Example: $271 / 10=27.1^{\circ} \mathrm{C}$. Range: -40 to 125	[65136-1250]-[0]-[0]-[0]
101	PIR Motion	Unsigned Int8		0 for no motion detected and 1 for motion detected	[0-1]-[0]-[0]-[0]
102	Air Quality	3 Signed Int16/ Unsigned Int16	$\mathrm{ug} / \mathrm{m}^{\wedge} 3$	PM1, PM2.5, PM10	$\begin{aligned} & {[0-65535]-[0-65535]-[0-} \\ & 65535]-[0] \end{aligned}$
103	Differential Pressure	Unsigned Int16	Pascals	Pressure in pascals multiplied by 10	[0-65535]-[0]-[0]-[0]
104	Vibration 800				
105	Tank Level Sensor	Unsigned Int16	Cm	Distance to target	[00004]-[000750]-[0]-[0]
107	Light Meter	Unsigned Int32	Lux	Intensity in Lux multiplied by 100	[0-65535]-[0-65535]-[0]-[0]
109	Three Phase CT				
110	Dwell Time Sensor				

